Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile

Abstract

La Cabaña peridotite is part of a dismembered ophiolite complex located within the metamorphic basement of the Coastal Cordillera of south-central Chile, and is the only location in Chile were Cr-spinels have been described so far. The La Cabaña peridotite is part of the Western Series unit, which comprises meta-sedimentary rocks, metabasites, and serpentinized ultramafic rocks. This unit has been affected by greenschist-facies metamorphism with reported peak PT conditions of 7.0–9.3 kbar and 380°–420 °C. Within La Cabaña peridotite Cr-spinels are present in two localities: Lavanderos and Centinela Bajo. In Lavanderos, Cr-spinel occurs in small chromitite pods and as accessory/disseminated grains with a porous or spongy texture in serpentinite, whereas in Centinela Bajo Cr-spinel is present as accessory zoned grains in partly serpentinized dunites, and in chromitite blocks. All Cr-spinels display variable degrees of alteration to Fe2+-rich chromite with a variation trend of major elements from chromite to Fe2+-rich chromite similar to those observed in other locations, i.e., an increase in Fe2O3 and FeO, a decrease in Al2O3 and MgO. Cr2O3 content increases from chromite to Fe2+-rich chromite in chromitite pods from Lavanderos and chromitite blocks from Centinela Bajo, but decreases in ferrian chromite zones in accessory grains from Centinela Bajo. The minor element (Ti, V, Zn, Ni) content is mostly low and does not exceed 0.4 wt.%, with the exception of MnO (<0.9 wt.%), which shows a correspondence with increasing degree of alteration. Cr# (Cr/Cr + Al) versus Mg# (Mg/Mg + Fe2+) and Fe3+/Fe3++Fe2+ versus Mg# plots are used to illustrate the Cr-spinel alteration process. Overall, the Cr-spinels from Lavanderos (chromitite pods and disseminated grains) exhibit Cr# values ranging from 0.6 to 1.0, Mg# (Mg/Mg + Fe2+) below 0.5, and (Fe3+/Fe3++Fe2+) <0.4. Cr-spinels from chromitites in Centinela Bajo have Cr# and Mg# values that range from 0.65 to 1.0, and 0.7-0.3, respectively, and (Fe3+/Fe3++Fe2+) < 0.4. Accessory Cr-spinels from Centinela Bajo have Cr# and Mg# values that range from 0.55 to 1.0, and 0.6- < 0.1, respectively. The (Fe3+/Fe3++Fe2+) ratio is less than 0.4 in chromite cores and Fe2+-rich chromite, and >0.5 in ferrian chromite and Cr-magnetite. Interpretation of the data obtained and Cr-spinel textures indicate that the alteration of Cr-spinel is a progressive process that involves in its initial stages the reaction of chromite with olivine under water-saturated conditions to produce clinochlore and Fe2+-rich chromite. During this stage the chromite can also incorporate Ni, Mn, and/or Zn from the serpentinization fluids. As alteration progresses, Fe2+-rich chromite loses mass resulting in the development of a spongy texture. In a later stage and under more oxidizing conditions Fe3+ is incorporated in chromite/Fe2+-rich chromite shifting its composition to an Fe3+-rich chromite (i.e., ferrian chromite). Depending on the fluid/rock and Cr-spinel/silicate ratios, Cr-magnetite can also form over Fe2+-rich chromite and/or ferrian chromite as a secondary overgrowth. The compositional changes observed in Cr-spinels from La Cabaña reflect the initial stages of alteration under serpentinization conditions. Results from this study show that the alteration of Cr-spinels is dependent on temperature. The degree and extent of alteration (formation of Fe2+-rich and/or ferrian chromite) are controlled by the redox nature of the fluids, the Cr-spinel/silicate and the fluid/rock ratios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aguirre L, Hervé F, Godoy E (1972) Distribution of metamorphic facies in Chile - an outline. Krystalinikum 9:7–19

    Google Scholar 

  2. Alfaro G (1980) Antecedentes preliminaries sobre la composición y génesis de las cromitas de La Cabaña (Cautín). Rev Geol Chile 11:29–41

    Google Scholar 

  3. Arai S (1994) Compositional variations of olivine-chromian spinel in Mg-rich magmas a guide to their residual spinel peridotites. J Vocanol Geotherm Res 59:273–293

    Google Scholar 

  4. Barnes SJ (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J Petrol 41:387–409

    Article  Google Scholar 

  5. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  6. Barra F, Rabbia O, Alfaro G, Miller H, Hofer C, Kraus S (1998) Las serpentinitas y cromititas de La Cabaña, provincia de Cautín. Chile. Revista Geológica deChile, IX Región

    Google Scholar 

  7. Barra F, Barnes J, Reich M (2012) The Serpentinites from the Coastal Cordillera of South-Central Chile - A Preliminary Report. AGU Fall Meeting, San Francisco, 3-7 December 2012

  8. Beeson MH, Jackson ED (1969) Chemical composition of altered chromites from Stillwater complex, Montana. Am Mineral 54:1084–1100

    Google Scholar 

  9. Bliss NW, MacLean WH (1975) The paragenesis of zoned chromite from central Manitoba. Geochim Cosmochim Acta 39:973–990

    Article  Google Scholar 

  10. Burkhard DJM (1993) Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim Cosmochim Acta 57:1297–1306

    Article  Google Scholar 

  11. Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014. doi:10.1029/2009GC002540

    Article  Google Scholar 

  12. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  13. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Inter Geol Rev 46:479–506

    Article  Google Scholar 

  14. Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Article  Google Scholar 

  15. Evans BW, Hattori K, Baronnet A (2013) Serpentinite: what, why, where? Elements 9:99–106

    Article  Google Scholar 

  16. Frutos J, Alfaro G (1987) Metallogenetic and tectonic chracteristics of the Paleozoic ophiolitic belt of the southern Chile coast cordillera. Geologische Rundschau 76:343–356

    Article  Google Scholar 

  17. Gervilla F, Padrón-Navarta JA, Kerestedjian T, Sergeeva I, González-Jiménez JM, Fanlo I (2012) Formation of ferrian chromite in podiform chromitites from the golyamo kamenyane serpentinite, eastern rhodopes, SE Bulgaria: a two-stage process. Contrib Mineral Petrol 164:643–657

    Article  Google Scholar 

  18. Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the south-central Chilean forearc. Earth Planet Sci Lett 231:23–39

    Article  Google Scholar 

  19. Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass flow balance of the south-central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos V, Strecker M, Wigger P (eds) The Andes-active subduction orogeny: Frontiers in earth sciences, vol 1. Springer Verlag, Berlin, pp 401–442

    Google Scholar 

  20. Glodny J, Echtler H, Collao S, Ardiles M, Burón P, Figueroa O (2008) Differential Late Paleozoic active margin evolution in South-Central Chile (37°S-40°S) - the Lanalhue Fault Zone. J South Am Earth Sci 26:397–411

    Article  Google Scholar 

  21. Godoy E (1979) Metabasitas del basamento metamórfico. II Congreso Geológico Chileno-Arica, Chile. Tomo III:E133-E144

  22. Golding HG, Bayliss P (1968) Altered chromite ores from the Coolac serpentine belt, New South Wales, Australia. Am Mineral 53:162–183

    Google Scholar 

  23. González-Jiménez JM, Kerestedjian T, Proenza JA, Gervilla F (2009) Metamorphism on chromite ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geol Acta 7:413–429

    Google Scholar 

  24. González-Jiménez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014a) Chromitites in ophiolites: how, where, when, why? Part II The crystallization of chromitites Lithos 189:140–158

    Google Scholar 

  25. González-Jiménez JM, Barra F, Reich M, Hernández E, Gervilla F, Griffin WL, O’Reilly SY, Akbulut M, Pearson NJ (2014b) PGE remobilisation during metamorphism of chromitites in Central Chile. 2014 Goldschmidt Conference. Sacramento, 8–13 June, 2014

  26. Graham IT, Franklin BJ, Marshall B (1996) Chemistry and mineralogy of podiform chromitite deposits, southern NSW, Australia: a guide to their origin and evolution. Miner Petrol 57:129–150

    Article  Google Scholar 

  27. Hamlyn PR (1975) Chromite alteration in the Panton Hill, East Kimberley Region, Western Australia. Mineral Mag 40:181–192

    Google Scholar 

  28. Hernández L, Barra F (1997) Hidrogrosularia-uvaroita, vesuvianita y perovskita: productos de rodingitización de rocas ultramáficas del área de La Cabaña, IX Región, Chile. VIII Congreso Geológico Chileno-Antofagasta, Chile. Tomo II:1309–1313

  29. Hervé F (1974) Petrology of the crystalline basement of Nahuelbuta Mountains, South-Central Chile. PhD Tesis Univ Hokkaide, Japón

  30. Hervé F (1977) Petrology of the crystalline basement of the nahuelbuta mountains, south-central Chile. In: Ishikawa T, Aguirre L (eds) Comparative studies on the geology of the circum-pacific orogenic belt in Japan and Chile, 1 rept. Japan Soc for Promotion of Sci, Tokio, pp 1–51

    Google Scholar 

  31. Hervé F, Godoy E, Del Campo M, Ojeda J (1976) Las metabasitas del Basamento Metamórfico de Chile Central y Austral. I Congreso Geológico Chileno-Santiago, Chile. Tomo I:F175–F187

  32. Höfer C, Kraus S, Miller H, Alfaro G, Barra F (2001) Chromite-bearing serpentinite bodies within an arc-backarc metamorphic complex near La cabana, south Chilean coastal cordillera. J S Am Earth Sci 14:113–126

    Article  Google Scholar 

  33. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamor Geol 16:309–343

    Article  Google Scholar 

  34. Irvine TN (1965) Chromian spinel as a petrogenetic indicator. Part I. Theory. Can J Earth Sci 2:648–672

    Article  Google Scholar 

  35. Irvine TN (1967) Chromian spinel as a petrogenetic indicator. Part II. Petrological Applications. Can J Earth Sci 4:71–103

    Article  Google Scholar 

  36. Jan MQ, Windley BF, Khan A (1985) The Waziristan Ophiolite, Pakistan: General geology and chemistry of chromite and associated phases. Econ Geol 80:294–306

    Article  Google Scholar 

  37. Kimball KL (1990) Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib Mineral Petrol 105:337–346

    Article  Google Scholar 

  38. Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge

  39. Klemme S, Ivanic TJ, Connolly JAD, Harte B (2009) Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 112:986–991

    Article  Google Scholar 

  40. Matsumoto I, Arai S (2001) Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun zone (SW Japan): implications for mantle/melt reaction and chromitite formation processes. Mineral Petrol 73:305–323

    Article  Google Scholar 

  41. Mellini M, Rumori C, Viti C (2005) Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles. Contrib Mineral Petrol 149:266–275

    Article  Google Scholar 

  42. Merlini A, Grieco G, Diella V (2009) Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am Mineral 94:1459–1467

    Article  Google Scholar 

  43. Mukherjee R, Mondal SK, Rosing MT, Frei R (2010) Compositional variations in the Mesoarchean chromitites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contrib Miner Petrol 160:865–885

    Article  Google Scholar 

  44. O’Hanley DS (1996) Serpentinites: recorders of tectonic and petrological history. Oxford monographs on geology and geophysics 34. Oxford University Press, New York

    Google Scholar 

  45. Onyeagocha AC (1974) Alteration of chromite from the twin Sisters dunite, Washington. Am Mineral 59:608–612

    Google Scholar 

  46. Proenza J, Solé J, Melgarejo JC (1999) Uvaroite in podiform chromitite: the Moa-Baracoa ophiolitic massif, Cuba. Can Mineral 37:679–690

    Google Scholar 

  47. Rabbia OM, Alfaro G, Barra F (1994) Presencia de espilitas metasomatizadas en el cinturón serpentinítico de la Cordillera de la Costa. II Jornada de Mineralogía, Petrografía y Metalogénesis de rocas Ultrabásicas. UnivNac de La Plata-Argentina, Tomo 3:607–615

    Google Scholar 

  48. Sack RO, Ghiorso MS (1991) Chromian spinels as petrogenetic indicators: thermodynamic and petrological applications. Am Miner 76:827–847

    Google Scholar 

  49. Saumur BM, Hattori K (2013) Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic. Mineral Mag 77:117–136

  50. Schirra W (1991) Die sudliche Kustenkordillere Chiles: Ein palaozoischer Ophiolithkomplex des “ensialic mature marginal basin” - Typs mit Kieslagervorkommen. PhD Tesis, Univ Heidelberg

  51. Shen P, Hwang SL, Chu HT, Jeng RC (1988) STEM study of “ferritchromit” from the Heng-Chun chromitite. Am Mineral 73:383–388

    Google Scholar 

  52. Spangenberg K (1943) Die chromitlaagerstatte von tampedal in Zobten. Z Prakt Geol 51:13–35

    Google Scholar 

  53. Vivallo W, Alfaro G, Díaz L (1988) Los metabasaltos de la Serie Occidental de la Cordillera de la Costa entre los 38°-41° latitud Sur, Chile: Evidencias geoquímicas de cuenca marginal durante el Paleozoico. Actas del Congreso Latino-Americano de Geologia. Belem, Pará, Brasil 1:260–273

    Google Scholar 

  54. Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Can Min 15:459–488

    Google Scholar 

  55. Willner AP (2005) Pressure-temperature evolution of a Late Palaeozoic paired metamorphic belt in north-central Chile (34°-35°30’S). J of Petrol 46:1805–1833

    Article  Google Scholar 

  56. Willner AP, Pawlig S, Massonne H-J, Hervé F (2001) Metamorphic evolution of spessartine quartzites (coticules) in the high-pressure, low-temperature complex at Bahia Mansa, Coastal Cordillera of south-central Chile. Can Mineral 39:1547–1569

    Article  Google Scholar 

  57. Willner AP, Thomson SN, Kröner A, Wartho JA, Wijbrans J, Hervé F (2005) Time markers for the evolution and exhumation history of an Upper Paleozoic paired metamorphic belt in Central Chile (34°–35°30’S). J Petrol 46:1835–1858

    Article  Google Scholar 

  58. Wylie AN, Candela PA, Burke TM (1987) Compositional zoning in unusual Zn-rich chromite from the Sykesville district of Maryland and its bearing on the origin of ‘‘ferritchromite’’. Am Mineral 72:413–422

Download references

Acknowledgments

This work was funded by Fondecyt Grant #1110345, entitled “Origin and evolution of the Coastal Cordillera ophiolite complex, Central Chile” to FB. We thank Marco Fiorentini (associate editor), Steve Barnes and an anonymous reviewer for their constructive criticism and helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando Barra.

Additional information

Editorial handling: M. Fiorentini

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barra, F., Gervilla, F., Hernández, E. et al. Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile. Miner Petrol 108, 819–836 (2014). https://doi.org/10.1007/s00710-014-0335-5

Download citation

Keywords

  • Olivine
  • Serpentine
  • Chromite
  • Chrysotile
  • Antigorite