Skip to main content
Log in

Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this study, the C-O-isotopic data from calcite at Yungul and Wilmott (Speewah. Western-Australia) are integrated with microthermometry, H2O-, CO2-content and H-He-Ar-isotopic data from fluid inclusions in genetically related calcite and fluorite to map the origin and crystallization paths of the fluids. In addition to the hydrogen isotopic compositions of fluid inclusions in fluorite, oxygen isotopic compositions were also determined by cavity ring-down spectroscopy. The geochemical data suggest mixing of a CO2-dominated mantle fluid and a H2O-domintated crustal brine. The fluid produced by this mixing is characterized by radiogenic (crustal-like) 3He/4He ratios, crustal-like δD values, relatively high salinity (19 − 24wt.% NaCl eq.), moderate homogenization temperatures (150 − 450 °C) and mantle-like CO2/3He ratios. Moreover, the large isotopic and elemental variations found in calcite indicate that its formation was accompanied by an extensive degassing (open system) leading to a decrease in δD and an increase in the CO2/3He values relative to the starting fluid composition. This degassing is consistent with the fluidal- and breccia-like texture of calcite observed in the field. In contrast, the fluorite which has coarse-grained banded to vughy textures formed in a passive aqueous system. Apparently the fluid that formed the fluorite has the same origin as the calcite, but the higher water content and the more radiogenic 3He/4He ratios reflect a greater involvement of crustal fluids. The historical description of the calcite-fluorite system in the Speewah area as “carbonatite” is now considered inappropriate because there is no evidence that crystallization is dominated by magmatic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvin MP, Dunphy JM, Groves DI (2004) Nature and genesis of a carbonatite-associated fluorite deposit at Speewah, East Kimberley region, Western Australia. Mineral Petrol 80:127–153. doi:10.1007/s00710-003-0015-3

    Article  Google Scholar 

  • Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone as indicators of age and palaeoclimate trends. J Hydrol 41:233–252

    Article  Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Reviews in Mineralogy and Geochemistry, Noble gases in Geochemistry and Cosmochemistry vol 47. Mineralogy Society of, America, pp 481–538

    Google Scholar 

  • Ballentine CJ, Mazurek M, Gautschi A (1994) Thermal constraints on crustal rare gas release and migration: evidence from alpine fluid inclusions. Geochim Cosmochim Acta 58:4333–4348

    Article  Google Scholar 

  • Ballentine CJ, O’Nions RK, Oxburgh EH, Horvath F, Deak J, Andrews JN, Lee D (1991) Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet Sci Lett 110:51–65

    Google Scholar 

  • Barry PH, Hilton DR, Fischer TP, de Moor JM, Mangasini F, Ramirez C (2013) Helium and carbon isotope systematics of cold “mazuku” CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chem Geol 339:141–156

    Article  Google Scholar 

  • Bell K (1989) Carbonatites. Genesis and Evolution. Unwin Hyman, London

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Boettcher AL, O’Neil JR (1980) Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: Evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280-A:594–621

    Google Scholar 

  • Bühn B, Rankin AH, Radtke M, Haller M, Knöchel A (1999) Burbankite, a (Sr, REE, Na, Ca)-carbonate from carbonatite derived fluids: identification and composition using Laser Raman spectroscopy, SEM-EDX and synchrotron micro-XRF analysis. Am Mineral 84:1117–1125

    Google Scholar 

  • Bühn B, Rankin AH, Schneider J, Dulski P (2002) The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich f luorite: f luid-inclusion evidence from the Okorusu f luorite deposit, Namibia. Chem Geol 186:75–98

    Article  Google Scholar 

  • Burnard PG, Hu R, Turner G, Bi XW (1999) Mantle, crustal and atmospheric noble gases in ailaoshan gold deposits, Yunnan Province, China. Geochim Cosmochim Acta 63(10):1595–1604. doi:http://dx.doi.org/10.1016/S0016-7037(99)00108–8

  • Campbell AR, Larson PB (1998) Introduction to stable isotope applications in hydrothermal systems. Rev Econ Geol 10:173–193

    Google Scholar 

  • Canet C, Franco SI, Prol-Ledesma RM, González-Partida E, Villanueva-Estrada RE (2011) A model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn epithermal deposit, Western Mexico. J. Geochem Expl 110:118–125

    Article  Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamonds. Elements 1:79–84

    Article  Google Scholar 

  • Castorina F, Censi P, Comin-Chiaramonti P, Piccirillo EM, Neto AA, Gomes CB, Aimeida TIR, Speziale S, Toledo MCM (1997) Carbonatites from Eastern Paraguay and genetic relationships with potassic magmatism: C, O, Sr and Nd isotopes. Mineral Petrol 61:237–260

    Article  Google Scholar 

  • Comin-Chiaramonti P, Gomes CB, Censi P, Speziale S (2005) Carbonatites from southeastern Brazil: a model for the carbon and oxygen isotope variations. In: Gomes CB (ed) Comin-Chiaramonti P. Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, SãoPaulo, pp 629–650

    Google Scholar 

  • Comin-Chiaramonti P, Gomes CB, Ruberti E, Antonimi A, Castorina F, Censi P (2001) Mato Preto alkaline-carbonatite complex: geochemistry and isotope (O-C, Sr-Nd) constraints. Geochim Brazil 15:23–34

    Google Scholar 

  • Clayton RN, Friedman I, Graff DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation waters, Isotopic Composition. J Geophys Res 71:3869–3882

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Czuppon G, Matsumoto T, Matsuda J, Everard J, Sutherland L (2010) Noble gases in anhydrous mantle xenoliths from Tasmania in comparison with other localities from eastern Australia: Implications for the tectonic evolution. Earth Planet Sci Lett 299(3-4):317–327. doi:http://dx.doi.org/10.1016/j.epsl.2010.09.012

  • Deines P (1970) The carbon and oxygen isotopic composition of carbonate from the Oka carbonatite, Quebec, Canada. Geochim Cosmochim Acta 44:1199–1225

    Article  Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 301–359

    Google Scholar 

  • Demény A (1995) H isotope fractionation due to hydrogen-zinc reactions and its implications on D/H analysis of water samples. Chem Geol 121(1/4):19–25

    Article  Google Scholar 

  • Demény A, Ahijado A, Casillas R, Boyce AJ, Fallick AE (1999) Crustal contamination of carbonatites indicated by δ34S-δ13C correlations: Canary islands, Spain. Rev Soc Geol Esp 12:453–460

    Google Scholar 

  • Demény A, Ahijado A, Casillas R, Vennemann TW (1998) Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study. Lithos 44(3–4):101–115

    Article  Google Scholar 

  • Demény A, Fórizs I, Molnár F (1994) Stable isotope and chemical compositions of carbonate ocelli and veins in Mesozoic lamprophyres of Hungary. Eur J Mineral 6:679–690

    Article  Google Scholar 

  • Demény A, Harangi S (1996) Stable isotope studies and processes of carbonate formation in Hungarian alkali basalts and lamprophyres: evolution of magmatic fluids and magma-sediment interactions. Lithos 37(4):335–349

    Article  Google Scholar 

  • Demény A, Siklósy Z (2008) Combination of off-line preparation and continuous flow mass spectrometry: D/H analyses of inclusion waters. Rapid Commun Mass Spectrom 22:1329–1334

    Article  Google Scholar 

  • Dill HG, Hansen BT, Weber B (2011) REE contents, REE minerals and Sm/Nd isotopes of granite- and unconformity-related fluorite mineralization at the western edge of the Bohemian Massif: With special reference to the Nabburg-Wölsendorf District, SE Germany. Ore Geol Rev 40:132–148. doi:10.1016/j.oregeorev.2011.06.003

    Article  Google Scholar 

  • Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Elliot T, Ballentine CJ, O’Nions RK, Ricchiuto T (1993) Carbon, helium, neon and argon isotopes in a Po basin natural gas field. Chem Geol 106:429–440

    Article  Google Scholar 

  • Ellis AJ, Golding RM (1963) The solubility of carbon dioxide above 100 °C in water and sodium chloride solutions. Am J Science 261:47–60

    Article  Google Scholar 

  • Fischer TP, Burnard P, Marty B, Hilton DR, Füri E, Palhol F, Sharp ZD, Mangasini F (2009) Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature l 459(7):77–80

    Article  Google Scholar 

  • Giggenbach WF, Sano Y, Wakita H (1993) Isotopes of He, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim Cosmochim Acta 57:3427–3455

    Article  Google Scholar 

  • Glass LM (2002) Petrogenesis and geochronology of the North Australian Kalkarindji low-Ti continental flood basalt province. Australian National University, Dissertation

    Google Scholar 

  • Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology 34(6):461–464

    Article  Google Scholar 

  • Gwalani LG, Rogers KA, Demény A, Groves DI, Ramsay R, Beard A, Downes PJ, Eves A (2010) The Yungul carbonatite dykes associated with the epithermal fluorite deposit at Speewah, Kimberley, Australia: carbon and oxygen isotope constraints on their origin. Mineral Petrol 98:123–141

    Article  Google Scholar 

  • Jaques AL, Hall AE, Sheraton JW, Smith CB, Sun S-S, Drew RM, Foudoulis C, Ellingsen K (1989) Composition of crystalline inclusions and C-isotopic compositions of Argyle and Ellendale diamonds. In: Ross J (ed) Proceedings of the 4th International Kimberlite Conference, Kimberlites and Related Rocks, 2:966–989

  • Karlstrom KE, Crossey LJ, Hilton DR, Barry PH (2014) Mantle 3He and CO2 degassing in carbonic and geothermal springs of Colorado and implications for neotectonics of the Rocky Mountains. Geology 41:495–498

    Article  Google Scholar 

  • Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds), vol 4. pp 113–123

  • Kendrick MA, Burgess R, Pattrick R, Turner G (2002) Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-type district: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine ore field, United Kingdom. Econ Geol 97:435–451

    Article  Google Scholar 

  • Kloppmann W, Girard JP, Négrel P (2002) Exotic stable isotope compositions of saline waters and brines from the crystalline basement. Chem Geol 184:49–70

    Article  Google Scholar 

  • Kyser TK, O'Neil JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Ata 48(10):2123–2133. doi:http://dx.doi.org/10.1016/0016-7037,84:90392-2

  • Lippolt HJ, Weigel E (1988) 4He diffusion in Ar retentive minerals. Geochim Cosmochim Acta 52:1449–1458

    Article  Google Scholar 

  • Marks MAW, Neukirchen F, Vennemann T, Markl G (2009) Textural, chemical, and isotopic effects of late-magmatic carbonatitic fluids in the carbonatite–syenite Tamazeght complex, High Atlas Mountains, Morocco. Mineral Petrol 97:23–42

    Article  Google Scholar 

  • Marty B, Jambon A (1987) C/3He in volatile fluxes from the solid Earth: implication for C geodynamics. Earth Planet Sci Lett 83:16–26

  • Mattey DP, Taylor WR, Green DH, Pillinger CT (1990) Carbon isotopic fractionation between CO, vapour, silicate and carbonate melts: an experimental study to 30 kbar. Contributions to Mineral Petrol 104:492–505

    Article  Google Scholar 

  • McDougall I, Harrison TM (1988) Geochronology and Thermochronology by the 40Ar-39Ar method. Oxford University Press, New York

    Google Scholar 

  • Mory AJ (1990) Ord basin. In: Geology and mineral resources of Western Australia. Geological Survey of Western Australia Memoir 3:415–425

  • Murty SVS, Basu S, Kumar A (2007) Noble gases in South Indian carbonatites: Trapped and in situ components. J Asian Earth Sci 30(1):154–169. doi:10.1016/j.jseaes.2006.08.004

    Article  Google Scholar 

  • Nadeau SL, Epstein S, Stopler E (1999) Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites. Geochim Cosmochim Acta 63:1837–1851

    Article  Google Scholar 

  • Ohmoto (1986) Stable isotope geochemistry of ore deposits. In: Valley JW, Taylor Jr. PH, O’Neil JR (eds) Reviews in Mineralogy, Stable isotopes in high temperature geological processes vol 16. Mineralogy Society of America pp 491–559

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl-CaC12-H, O: I. The ice liquidus at 1 atm total pressure. Geochim Cosmochim Ata 54:603–610

    Article  Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry. Press, Cambridge University

    Google Scholar 

  • Page RW, Sun S (1994) Evolution of the Kimberley region, Western Australia and adjacent Proterozoic inliers-new geochronological constraints. In: 12th Australian Geological Convention, Perth, Geological Society Australia Abstracts Volume 37:332–333

  • Palmer DAS, Williams-Jones AE (1996) Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. Econ Geol 91:934–995

    Article  Google Scholar 

  • Papp L, Palcsu L, Major Z, Rinyu L, Tóth I (2012) Noble gas measurements from different water amounts - from microlitres to millilitres and litres. Isot Environ Health Stud 48(4):494–511. doi:10.1080/10256016.2012.679935

    Article  Google Scholar 

  • Pineau FO, Javoy M, Allegre CJ (1973) Etude systèmatique des isotopes de l’oxygéne, du carbone et du strontium dans les carbonatites. Geochim Cosmochim Acta 37(11):2363–2377. doi:10.1016/0016-7037(73)90285-8

    Article  Google Scholar 

  • Ray JS, Shukla AD, Dewangan LK (2009) Carbon and oxygen isotopic compositions of Newania Dolomite Carbonatites, Rajasthan, India: implications for source of carbonatites. Mineral Petrol 98:269–282. doi:10.1007/s00710-009-0073-2

    Article  Google Scholar 

  • Richardson CK, Holland HD (1979) Fluorite deposition in hydrothermal systems. Geochim Cosmochim Acta 43:1327–1335

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in Mineralogy, vol 12. Mineralogical Society of America, Virginia

  • Ronchi LH, Touray JC, Michard A, Dardenne MA (1993) The Ribeire fluorite district, southern Brazil. Miner Depos 28:240–252

    Article  Google Scholar 

  • Samson IM, Liu W, Williams-Jones AE (1995) The nature of orthomagmatic hydrothermal fluids in the Oka carhonatite, Quebec, Canada: Evidence from fluid inclusions. Geochim Cosmochim Acta 59(10):1963–1977

    Article  Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274

    Article  Google Scholar 

  • Schwinn G, Markl G (2005) REE systematics in hydrothermal fluorite. Chem Geol 216:225–248

    Article  Google Scholar 

  • Sheppard S (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor Jr. PH, O’Neil JR eds) Reviews in Mineralogy, Stable isotopes in high temperature geological processes vol 16. Mineralogy Society of America pp 165–184

  • Sheppard S, Page RW, Griffin TJ, Rasmussen B, Fletcher IR, Tyler IM, Kirkland CL, Wingate MTW, Hollis JA, Thorne AM (2012) Geochronological and isotopic constraints on the tectonic setting of the c. 1800 Ma Hart Dolerite and the Kimberley and Speewah Basins, northern Western Australia. Geological Survey of Western Australia, Record 2012/7

  • Simmons SF, Browne PRL (1997) Saline fluid inclusions in sphalerite from the Broadlands-Ohaaki geothermal system: a coincidental trapping of fluids being boiled toward dryness. Econ Geol 92:485–489

    Article  Google Scholar 

  • Simonetti A, Bell K (1995) Nd, Pb, and Sr Isotope Systematics of Flumite at the Amba Dongar Carbonatite Complex, India: Evidence for Hydrothermal and Crustal Fluid Mixing. Econ Geol 90:2018–2027

    Article  Google Scholar 

  • Skinner BJ (1997) Hydrothermal mineral deposits: what we do and don’t know. In: Barnes HL (ed) Geochemistry of Hydrothermal Ore Deposits, 3rd edn. Wiley, New York, USA, pp 1–29

    Google Scholar 

  • Spötl C, Vennemann TW (2003) Continuous-flow IRMS analysis of carbonate minerals. Rapid Commun Mass Spectrom 17:1004–1006

    Article  Google Scholar 

  • Stephen H, Stephen T (1963) Solubilities of Inorganic and Organic Compounds, I. Part I. Pergamon Press, Binary Systems

    Google Scholar 

  • Taylor BE (1986) Magmatic Volatiles: Isotopic variation of C, H and S. In: Valley JW, Taylor Jr. PH, O’Neil JR (eds) Reviews in Mineralogy, Stable isotopes in high temperature geological processes, vol 16. Mineralogical Society of America, pp 185–226

  • Taylor BE, Friedrichsen H (1983) Light stable isotope systematics of granitic pegmatites from North America and Norway. Isot Geosci 1:127–167

    Google Scholar 

  • Taylor HP Jr (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Article  Google Scholar 

  • Taylor HP Jr (1997) Oxygen and hydrogen isotope relationships in hydrothermalmineral deposits. In: Barnes HL (ed) Geochemistry of Hydrothermal Ore Deposits, 3rd edition, vol. Wiley-Interscience, New York, pp 229–302

    Google Scholar 

  • Taylor HP Jr, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District Sweden. Geochim Cosmochim Acta 31:407–330

    Article  Google Scholar 

  • Thom JH (1975) Kimberley region. In: The geology of Western Australia, Geological Survey of Western Australia, Memoir 2:160–193

  • Thorne AM, Sheppard S, Tyler IM, Lissadell WA (1999) Western Australia Geol Surv 1:250 000 Geol Series Explanatory Notes (2nd edition), 68

  • Tolstikhin IN, Kamensky IL, Marty B, Nivin VA, Vetrin VR, Balaganskaya EG, Ikorsky SV, Gannibal MA, Weiss D, Verhulst A, Demaiffe D (2002) Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: Identification of lower mantle plume component. Geochim Cosmochim Acta 66(5):881–901

    Article  Google Scholar 

  • Torgerson J, Clarke WB (1985) Helium accumulation in groundwaters. I. An evaluation of sources and the continental flux of 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:2445–2454

    Article  Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor Jr. PH, O’Neil JR (eds) Reviews in Mineralogy, Stable isotopes in high temperature geological processes vol 16. Mineralogy Society of America, pp 445–490

  • Varsányi I, Palcsu L, Ó-Kovács L (2011) Groundwater flow system as an archive of palaeo-temperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary. Appl Geochem 26:91–104

    Article  Google Scholar 

  • Xia Q-K, Dallai L, Deloule E (2004) Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China. Chem Geol 209:137–151

    Article  Google Scholar 

  • Zheng YF (1990) Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2. Miner Depos 25:246–250

    Article  Google Scholar 

Download references

Acknowledgments

L G Gwalani would like to thank Prof. D.I. Groves for introducing him to the Speewah geology. The research was initially undertaken with the support of Gledden Fellowship grant and was subsequently funded by Speewah Metals Ltd./King River Copper Ltd. His special thanks are due to Anthony Barton, for active support and encouragement throughout the study of the Speewah complex. We are very much grateful to the reviewers for their constructive suggestion and comments. We are also thankful for Csaba Szabó for his support and help in the microthermometric analyses. The mass spectrometry and the cavity ring-down spectroscopy facilities of the Institute for Geological and Geochemical Research, Budapest, was supported by the National Office for Research and Technology (GVOP-3.2.1-2004-04-0235/3.0) and by the Hungarian Scientific Research Fund (OTKA CK 80661). Drafts of the paper have been considerably improved by comments from Dr Julie Hollis at the Geological Survey of Western Australia and Prof Marco Fiorentini and Dr Geoff Batt from the University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gy Czuppon.

Additional information

Editorial handling: J. Kosler

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17kb)

Fig S1

(JPEG 339kb)

Fig S2

(JPEG 347kb)

Fig S3

(JPEG 61kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czuppon, G., Ramsay, R.R., Özgenc, I. et al. Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing. Miner Petrol 108, 759–775 (2014). https://doi.org/10.1007/s00710-014-0333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-014-0333-7

Keywords

Navigation