Skip to main content
Log in

Geochemistry of Neogene quartz andesites from the Oaş and Gutâi Mountains, Eastern Carpathians (Romania): a complex magma genesis

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Neogene quartz andesites from the Oaş and Gutâi Mountains (Romania) are mid-K calc-alkaline rocks and contain plagioclase-orthopyroxene-clinopyroxene-amphibole-magnetite phenocrysts as well as quartz crystals. They are associated with a volcanic sequence ranging from basalts and basaltic andesites to dacites and rhyolites, but form a separate magma group, mostly in respect to the trace elements. Based on the geochemical data combined with inferences from complex zoning patterns in plagioclase and pyroxene, the evolution of quartz andesites is interpreted in terms of fractional crystallization, AFC and magma mixing. A parental magma deriving from a MORB- or OIB-type source modified by fluids and melts originating from sediments is envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Balintoni I (1997) The geotectonics of the metamorphics in Romania. Edit Carp Cluj-Napoca, 176 pp (in Romanian)

  • Barbarin B (1990) Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. J Geophy Res 90(B11):17747–17756

    Google Scholar 

  • Barragan R, Geist D, Hall M, Larson P, Kurz M (1998) Subduction controls on the compositions of lavas from Ecuadorian Andes. Earth Planet Sci Lett 154:153–166

    Google Scholar 

  • Behn MD, Kelemen PB, Hirth G, Hacker BR, Massone H-J (2011) Diapirs as the source of the sediment signature in arc lavas. Nat Geosci 4:641–646

    Google Scholar 

  • Berlo K, Blundy J, Turner S, Hawkesworth C (2007) Textural and chemical variation in plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens, USA. Contrib Mineral Petrol 154:291–308

    Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression–driven crystallization beneath andesites volcanoes. Nat 443:76–80

    Google Scholar 

  • Borcoş M (1994) Neogene volcanicity-metallogeny in the Oaş-Gutâi Mts. In: Borcoş M, Vlad Ş (eds) Plate tectonics and metallogeny in the East Carpathians and Apuseni Mts. Field trip guide, IGCP Project No. 356, Geol Inst Rom Bucharest, pp 20–22

  • Borcoş M, Gheorghiţă I, Lang B (1974a) Neogene hydrothermal ore deposits in the volcanic Gutâi Mountains I. Ilba-Băiţa metallogenetic district. Rev Roum Géol Géophys Géogr Serie Géol 18:19–37

    Google Scholar 

  • Borcoş M, Gheorghiţă I, Lang B (1974b) Neogene hydrothermal ore deposits in the volcanic Gutâi Mountains II. Băiţa-Valea Roşie district. Rev Roum Géol Géophys Géogr Serie Géol 18:39–56

    Google Scholar 

  • Borcoş M, Lang B, Peltz S, Stan N (1973) Volcanisme neogene des Monts Gutâi. Rev Roum Géol Géophys Géogr Serie Géol 17(1):81–93

    Google Scholar 

  • Borcoş M, Peltz S, Stan N, Udrescu C, Vasiliu C (1979) Petrochemical and geochemical considerations on Neogene volcanics from the Gutâi and Oaş Mts. Stud Tehn Econ Ser I 16:35–39 (in Romanian)

    Google Scholar 

  • Castillo PR, Newhall CG (2004) Geochemical constraints on possible subduction components in lavas of Mayon and Taal volcanoes, Southern Luzon, Philippines. J Petrol 45(6):1089–1108

    Google Scholar 

  • Chiaradia M, Müntener O, Beate B (2011) Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (PilavoVolcano, Western Cordillera of Ecuador). J Petrol 52(6):1107–1141

    Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nat 411:1037–1039

    Google Scholar 

  • Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanol 7:1–13

    Google Scholar 

  • Csontos L, Nagymarosy A (1998) The mid-Hungarian line: a zone of repeated tectonic inversion. Tectonophysics 297:51–71

    Google Scholar 

  • Csontos L, Nagymarosy A, Horváth F, Kovács M (1992) Tertiary evolution in the Intracarpathian area: a model. Tectonophysics 208:221–241

    Google Scholar 

  • Davidson JP, McMillan NJ, Moorbath S, Wörner G, Harmon RS, Lopez-Escobar L (1990) The Nevados de Payachata volcanic region (18º S/69º W, N Chile) II. Evidence for widespread crustal involvement in Andean magmatism. Contrib Mineral Petrol 105:412–432

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • Edelstein O, Bernad A, Kovacs M, Crihan M, Pécskay Z (1992) Preliminary data regarding the K-Ar ages of some eruptive rocks from Baia Mare Neogene volcanic zone. Rev Roum Géol Géophys Géogr Serie Géol 36:45–60

    Google Scholar 

  • Edelstein O, Pécskay Z, Kovacs M, Bernad A, Crihan M, Micle R (1993) The age of basalts from Firiza zone, Igniş Mts., East Carpathians, Romania. Rev Roum Géol Géophys Géogr Serie Géol 37:37–41

    Google Scholar 

  • Edelstein O, Răduţ M, Istvan D, Kovacs M, Bernad A, Gabor M, Haranth G (1987) Intrusive bodies in the Oaş-Văratec Mountains and their relations to volcanic and to non-ferrous mineralizations. D S Inst Geol Geofiz 72–73(1):67–79

    Google Scholar 

  • Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nat 275:21–27

    Google Scholar 

  • Fülöp A (2002) Facies analysis of the volcaniclastic sequence built up above the 15.4 Ma rhyolitic ignimbrites from Gutâi Mts., Eastern Carpathians. Studia Univ Babeş-Bolyai Geol Sp iss 1:199–206

    Google Scholar 

  • Fülöp A (2003) The begining of volcanism in the Gutâi Mts.: Paleovolcanic and paleosedimentological reconstruction. Edit Dacia Cluj-Napoca, 134 pp (in Romanian)

  • Fülöp A, Crihan M (2002) Badenian and Sarmatian acidic volcaniclastics of pyroclastic origin from Oaş Mts., Eastern Carpathians (Northwestern Romania). Rev Roum Géol Géophys Géogr Serie Géol 46:61–72

    Google Scholar 

  • Fülöp A, Kovacs M (2003) Petrology of Badenian ignimbrites, Gutâi Mts. (Eastern Carpathians). Studia Univ Babeş-Bolyai Geol 48:17–28

    Google Scholar 

  • Gagnevin D, Waight TE, Daly JS, Poli G, Conticelli S (2007) Insights into magmatic evolution and recharge history in Capraia volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts. J Volcanol Geoth Res 168:28–54

    Google Scholar 

  • Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98:118–140

    Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2002) Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib Mineral Petrol 143:300–315

    Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2007) Crystal zoning as an archive for magma evolution. Elements 3:261–266

    Google Scholar 

  • Gioncada A, Mazzuoli TR, Milton AJ (2005) Magma mixing at Lipari (Aeolian Islands, Italy): insights from textural and compositional features of phenocrysts. J Volcanol Geoth Res 145:97–118

    Google Scholar 

  • Giuşcă D, Rădulescu D, Gherasi N, Bombiţă Gh, Vasilescu Al, Kräutner H (1967) Geological map of Romania 1:200,000 Baia Mare Sheet, Geol Inst Buc

  • Gómez-Tuena A, LaGatta AB, Langmuir C, Goldstein SL, Ortega-Gutiérrez F, Carrasco-Núñez G (2003) Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst 4:1–33

    Google Scholar 

  • Handley HK, Macpherson CG, Davidson JP, Berlo K, Lowry D (2007) Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex. J Petrol 48:1155–1183

    Google Scholar 

  • Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Amer Sp Pap 418:67–92

    Google Scholar 

  • Harzhauser M, Piller EW (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Paleogeogr Palaeoclimat Palaeoecol 253:8–31

    Google Scholar 

  • Hawkesworth CJ, Turner S, Peate D, McDermot F, Van Calsteren P (1997) Elemental U and Th variation in island arc rocks: implication for U-series isotopes. Chem Geol 139:207–221

    Google Scholar 

  • Hoeck V, Ionescu C, Balintoni I, Koller F (2009) The Eastern Carpathians “ophiolites”: Remnants of a Triassic ocean. Lithos 108:151–171

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47:2303–2334

    Google Scholar 

  • Ionescu C, Hoeck V, Tomek C, Koller F, Balintoni I, Beşuţiu L (2009) New insights into the basement of the Transylvanian depression (Romania). Lithos 108:172–191

    Google Scholar 

  • Izbekov PE, Eichelberger JC, Patino LC, Vogel TA, Ivanov BV (2002) Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: evidence for rapid introduction by basaltic replenishment. Geol 30:799–802

    Google Scholar 

  • Jude R (1977) Geology and petrology of the Neogene volcanics from NW of Oaş Mts. eruptive zone (Tarna Mare-Turţ area). Stud Tehn Econ Ser A 11:111–174 (in Romanian)

    Google Scholar 

  • Jude R (1986) Metallogenesis associated to the Neogene volcanism from the NW of the Oaş Mts. Edit Acad Buc 132 pp (in Romanian)

  • Jurje M (2012) Quartz andesites from the Oaş-Gutâi Neogene volcanic area (Romania). PhD Thesis, 139 pp, Babeş-Bolyai Univ Cluj-Napoca (in Romanian)

  • Kovacs M (1995) Volcanicity/metallogeny in Oaş-Gutâi Mts. General remarks. Rom Jour Mineral 77:21–28

    Google Scholar 

  • Kovacs M (2002) Petrogenesis of subduction-related igneous rocks from the central-southeastern area of the Gutâi Mts. Edit Dacia Cluj-Napoca 201 pp (in Romanian)

  • Kovacs M, Fülöp A (2002) Neogene volcanism in Oaş Mts., Eastern Carpathians, Romania. Geol Carp 53:208–210

    Google Scholar 

  • Kovacs M, Fülop A (2003) Neogene volcanism in the Gutâi Mts. (Eastern Carpathians): a review. Studia Univ Babeş-Bolyai Geol 48:3–16

    Google Scholar 

  • Kovacs M, Edelstein O, Iştvan D (1987a) Andesites from the Oaş-Ţibleş Mts.: definition and classification based on petrochemical data. Stud Cerc Geol 32:12–24 (in Romanian)

    Google Scholar 

  • Kovacs M, Edelstein O, Iştvan D, Pop N, Bernad A, Stan D (1987b) Petrological data on intrusives bodies from the SE of the Oaş-Ţibleş neogene volcanic chain (between the Firiza and Botiza valleys). D S Inst Geol Geofiz 72–73:97–119 (in Romanian)

    Google Scholar 

  • Kovacs M, Edelstein O, Iştvan D, Grabari G, Stoian M, Popescu G (1992) Distribution of REE, K, Rb, Sr and 87Sr/86Sr ratios in the Neogene andesites of the Igniş-Văratec (Gutâi) Mountains. Rom J Petrol 75:145–159

    Google Scholar 

  • Kovacs M, Edelstein O, Gabor M, Bonhomme M, Pécskay Z (1997a) Neogene magmatism and metallogeny in Oaş-Gutâi-Ţibleş Mts.: a new approach based on radiometric datings. Rom J Miner Dep 78:35–45

    Google Scholar 

  • Kovacs M, Pécskay Z, Crihan M, Edelstein O, Gabor M, Bernad A (1997b) K-Ar study of Neogene volcanic rocks from the Oaş Mts. (East Carpathians, Romania). Rev Roum Géol Géophys Géogr Serie Géol 41:19–28

    Google Scholar 

  • Kovacs M, Fülop A, Pécskay Z (2006) Neogene calc-alkaline magmatism in Oaş-Gutâi Mts., Eastern Carpathians, Romania. Time and space evolution. Proceed XVIII Congr Carpath-Balk Geol Assoc Belgrade pp 290–293

  • Kovács I, Csontos L, Szabó C, Bali E, Falus G, Benedek K, Zajacz Z (2007) Paleogene–earlyMiocene igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: an integrated approach. Geol Soc Amer Sp Paper 418:93–112

    Google Scholar 

  • Kovács I, Falus G, Stuart G, Hidas K, Szabó C, Flower M, Hegedus E, Posgay K, Zilahi-Sebess L (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian-Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179

    Google Scholar 

  • Kovács I, Szabó C (2008) Middle Miocene volcanism in the vicinity of the Middle Hungarian zone: evidence for an inherited enriched mantle source. J Geodyn 45:1–17

    Google Scholar 

  • Lang B (1976) Mineralogy and geochemistry of the Neogene pyroxene andesites from the northern part of the Gutâi Mountains (Romania). An Inst Geol Geofiz 64:153–213

    Google Scholar 

  • Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Lexa J, Konečny V (1998) Geodynamic aspects of the Neogene to Quaternary volcanism. In: Rakus M (ed) Geologic development of the Western Carpathians. GSSR Bratislava, pp 219–240

  • Lexa J, Seghedi I, Nemeth K, Szakács A, Konecný V, Pécskay Z, Fülöp A, Kovacs M (2010) Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review. Central Eur J Geosci 2:207–270

    Google Scholar 

  • Luhr JF, Pier JG, Aranda-Gómez JJ, Padosek FA (1995) Crustal contamination in early Basin-and-Range hawaiites of the Los Encinos Volcanic Field, central México. Contrib Mineral Petrol 118:321–339

    Google Scholar 

  • Luth WC (1976) I. Granitic rocks. In: Bailey DK, MacDonald R (eds) The evolution of the crystalline rocks. Academic Press, London New York San Francisco, pp 335–417

    Google Scholar 

  • Marske JP, Pietruszka AP, Trusdell FA, Garcia MO (2011) Geochemistry of southern Pagan Island lavas, Mariana arc: the role of subduction processes. Contrib Mineral Petrol 162:231–252

    Google Scholar 

  • Márton E, Tischler M, Csontos L, Fügenschuh B, Schmid S (2007) The contact zone between the ALCAPA and Tisza-Dacia mega-tectonic units of Northern Romania in the light of new paleomagnetic data. Swiss J Geosci 100:109–124

    Google Scholar 

  • Mashima H (2004) Time scale of magma mixing between basalt and dacite estimated for the Saga-Futagoyama volcanic rocks in northwest Kyushu, southwest Japan. J Volcanol Geoth Res 131:333–349

    Google Scholar 

  • Mason PRD, Downes H, Thirwall MF, Seghedi I, Szakács A, Lowry D, Mattey D (1996) Crustal assimilation as a major petrogenetic process in the East Carpathian Neogene and Quaternary continental margin arc, Romania. J Petrol 37:927–959

    Google Scholar 

  • Mason PRD, Seghedi I, Szakács A, Downes H (1998) Magmatic constraints on geodynamic models of subduction in the Eastern Carpathians, Romania. Tectonophys 297:157–176

    Google Scholar 

  • Matenco L, Krézsek C, Merten S, Schmid S, Cloetingh S, Adriessen P (2010) Caracteristics of collisional orogens with low topographic built-up: an example from the Carpathians. Terra Nova 22:155–165

    Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Amer Mineral 77:1242–1249

    Google Scholar 

  • Nemcok M, Pospisil L, Lexa J, Donelick RA (1998) Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophys 295:307–340

    Google Scholar 

  • Neubauer F, Lips A, Kouzmanov K, Lexa J, Ivăşcanu P (2005) 1: Subduction, slab detachment and mineralization: the Neogene in the Apuseni Mountains and Carpathians. Ore Geol Rev 27:13–44

    Google Scholar 

  • Nixon GT, Pearce TH (1987) Laser-interferometry study of oscillatory zoning in plagioclase: the record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccíhuatl volcano, Mexico. Amer Mineral 72:1144–1162

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285

    Google Scholar 

  • Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. Geophys Monogr 166:63–86

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib Miner Petrol 58:63–81

    Google Scholar 

  • Pécskay Z, Edelstein O, Kovacs M, Bernad A, Crihan M (1994) K-Ar age determination of Neogene volcanic rocks from the Gutâi Mts. (Eastern Carpathians, Romania). Geol Carp 45:357–363

    Google Scholar 

  • Pécskay Z, Edelstein O, Seghedi I, Szakács A, Kovacs M, Crihan M, Bernad A (1995a) K-Ar datings of Neogene-Quaternary calc-alkaline volcanic rocks in Romania. In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian region. Acta Vulcanol 7:53–62

  • Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Konečný V, Kovacs M, Márton M, Kaliciak M, Szeky-Fux V, Póka T, Gyarmaty P, Edelstein O, Roşu E, Zec B (1995b) Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region. In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian region. Acta Vulcanol 7:15–29

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006a) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area: a review. Geol Carp 57:511–530

    Google Scholar 

  • Pécskay Z, Seghedi I, Downes H, Prychodko M, Mackiv B (2006b) K/Ar dating of Neogene calc-alkaline volcanic rocks from Transcarpathian Ukraine. Geol Carp 51:83–89

    Google Scholar 

  • Pécskay Z, Seghedi I, Kovacs M, Szakács A, Fülöp A (2009) Geochronology of the Neogene calc-alkaline intrusive magmatism in the “Subvolcanic Zone” of the Eastern Carpathians (Romania). Geol Carp 60:181–190

    Google Scholar 

  • Petrone CM, Olmi F, Braschi E, Francalanci E (2006) Mineral chemistry profile: a valuable approach to unravel magma mixing processes in the recent volcanic activity of Stromboli, Italy. Per Mineral 75:277–292

    Google Scholar 

  • Phemister J (1934) Zoning in plagioclase feldspars. Mineral Mag 23:541–555

    Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment: implications for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Powell R (1984) Inversion of the assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites. J Geol Soc London 141:447–452

    Google Scholar 

  • Rădulescu D (1973) Considerations on the origin of magmas of the Neozoic subsequent volcanism in the East Carpathians. An Inst Geol 41:49–69

    Google Scholar 

  • Reubi O, Nicholls IA, Kamenetsky VS (2002) Early mixing and mingling in the evolution of basaltic magmas: evidence from phenocryst assemblages, Slamet Volcano, Java, Indonesia. J Volcanol Geoth Res 119:255–274

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: Evaluation, presentation, interpretation. Longman Group Ltd Harlow 352 pp

  • Ruprecht P, Wörner G (2007) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J Volcanol Geoth Res 165:142–162

    Google Scholar 

  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen J-P, Cotten J (2005) Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe Volcanic Complex (Ecuador). J Petrol 46:2225–2252

    Google Scholar 

  • Săndulescu M (1984) Geotectonics of Romania. Edit Tehn Bucharest, 334 pp (in Romanian)

  • Săndulescu M, Russo-Săndulescu D (1981) Geological map of Romania, 1:50,000. Poiana Botizii Sheet, Inst Geol Geophys Bucharest

    Google Scholar 

  • Sato H (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in Northeastern Shikoku, Japan. Contrib Mineral Petrol 50:49–64

    Google Scholar 

  • Schiano P, Monzier M, Eissen J-P, Martin H, Koga KT (2010) Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol 160:297–312

    Google Scholar 

  • Seghedi I, Downes H (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondw Res 20:655–672

    Google Scholar 

  • Seghedi I, Szakács A, Mason PRD (1995) Petrogenesis and magmatic evolution in the East Carpathian Neogene volcanic arc (Romania). In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian region. Acta Vulcanol 7:135–143

  • Seghedi I, Balintoni I, Szakács A (1998) Interplay of tectonics and Neogene post-collisional magmatism in the intracarpathian region. Lithos 45:483–499

    Google Scholar 

  • Seghedi I, Downes H, Pécskay Z, Thirlwall MF, Szakács A, Prychodko M, Mattey D (2001) Magma genesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians. Lithos 57:237–262

    Google Scholar 

  • Seghedi I, Downes H, Szakács A, Mason PRD, Thirwall MF, Roşu E, Pécskay Z, Marton E, Panaiotu C (2004) Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis. Lithos 72:117–146

    Google Scholar 

  • Seghedi I, Downes H, Harangi S, Mason PRD, Pécskay Z (2005) Geochemical response of magmas to Neogene-Quaternary continental collision in the Carpathian–Pannonian region: a review. Tectonophys 410:485–499

    Google Scholar 

  • Seghedi I, Maţenco L, Downes H, Mason PRD, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region. Tectonophys 502:146–157

    Google Scholar 

  • Shcherbakov VD, Plechov PY, Izbekov PE, Shipman JS (2011) Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contrib Mineral Petrol 162:83–99

    Google Scholar 

  • Singer BS, Pearce TH, Kolisnik AM, Myers JD (1995) Plagioclase zoning in mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc, Alaska. Amer Mineral 78:143–157

    Google Scholar 

  • Stimac JA, Pearce TH (1992) Textural evidence of mafic-felsic magma interaction in dacite lavas, Clear Lake, California. Amer Mineral 77:795–809

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle compositions and processes. Geol Soc London Sp Publ 42:313–345

    Google Scholar 

  • Szabó CS, Harangi SZ, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophys 208:243–256

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Oxford, 311 pp

  • Tepley FJ, Davidson JP, Clynne MA (1999) Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen Volcanic Center, California. J Petrol 40(5):787–806

    Google Scholar 

  • Tepley FJ, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge, and eruption histories recorded in plagioclase phenocrysts from El Chichón volcano, Mexico. J Petrol 41:1397–1411

    Google Scholar 

  • Tischler M, Gröger HR, Fügenschuh B, Schmid SM (2007) Miocene tectonics of the Maramureş area (Northern Romania): implications for the Mid-Hungarian fault zone. Int J Earth Sci 96:473–496

    Google Scholar 

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Google Scholar 

  • Vance JA (1965) Zoning in igneous plagioclase: patchy zoning. J Geol 73:637–651

    Google Scholar 

  • Whitney JA (1975) The effect of pressure, temperature, and XH2O on phase assemblage in four synthetic rock compositions. J Geol 83:1–31

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Amer Mineral 95:185–187

    Google Scholar 

  • Wiebe RA (1968) Plagioclase stratigraphy: a record of magmatic conditions and events in a granite stock. Amer J Sci 266:690–703

    Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‚conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Google Scholar 

Download references

Acknowledgments

Critical comments by Dr. C. Szabo and an anonymous reviewer significantly helped to improve the paper. Dr. M. Maggetti and Dr. C. Tomek are thanked for the fruitful discussions and important suggestions and Mrs. Monica Mereu for the computer-assisted drawings, respectively. The financial support provided to M.J. through the “Human resources development” program, Contract POSDRU 6/1.5/S/3 “Doctoral studies: through science towards society” is gratefully acknowledged. C.I. and V.H benefited of CEEPUS (Central European Exchange Program for University Studies) scholarships and analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina Ionescu.

Additional information

Editorial handling: J. G. Raith

*** GERM Partition Coefficient (Kd) Database. http://earthref.org/KDD/, accessed on 22 Sept 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurje, M., Ionescu, C., Hoeck, V. et al. Geochemistry of Neogene quartz andesites from the Oaş and Gutâi Mountains, Eastern Carpathians (Romania): a complex magma genesis. Miner Petrol 108, 13–32 (2014). https://doi.org/10.1007/s00710-013-0282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0282-6

Keywords

Navigation