Skip to main content
Log in

Trace-element study and age dating of zircon from chromitites of the Bushveld Complex (South Africa)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The layered Bushveld Complex hosts a number of chromitite layers, which were found to contain significant amounts of zircon grains compared with adjacent silicate rocks. Cathodoluminescent-dark, partially metamict cores and transparent rims of composite zircon grains were analyzed for trace elements with SIMS and LA-ICPMS techniques. The cores are enriched in REE, Y, Th and U and are characterized by distinctly flatter REE patterns in contrast to those of the rims and transparent homogenous crystals. Zircon from the different stratigraphic units has specific Th/U ratios, the highest of which (1.5–4) occurs in a Merensky Reef zircon core. The Ti content of Bushveld zircon ranges from 12 to 52 ppm correlating to a crystallization temperature range of 760–930 °C. The geochemical characteristics of the first zircon generation are consistent with its high-temperature crystallization as the first major U, Th and REE acceptor from a highly-evolved residue of the high-Mg basalt magma, whereas the rims and coreless crystals have crystallized from percolating intercumulus liquid of new influx of the same magma. U-Pb SHRIMP dating of zircon cores and rims does not reveal a distinguishable difference between their ages indicating the absence of inherited zircon. Concordia ages of 2,051 ± 9 Ma (2σ, MSWD = 0.1) and 2,056 ± 5 Ma (2σ, MSWD = 0.05) for zircons from the Merensky Reef and the Upper Platreef located equally near the top of the Critical Zone are in agreement with published ages for the Merensky Reef. Zircon from the deeper-seated Lower Group, Middle Group and Lower Platreef chromitites yields younger concordia ages that may reflect prolonged late-stage volatile activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adlakha EE, Hanley JJ, Heinrich CA (2011) Hydrothermal processes beneath the Merensky Reef and UG2 Chromitite, Bushveld Complex, RSA. Abstracts of Goldschmidt 2011 Meeting, Aug. 14–19, 2011, Prague, Czech Republic, Mineral Magazine 75:409

  • Alexandre P, Andreoli MAG, Jamison A, Gibson R (2006) 40Ar/39Ar age constraints on low-grade metamorphism and cleavage development in the Transvaal Supergroup (central Kaapvaal craton, South Africa): implications for the tectonic setting of the Bushveld Igneous Complex. S Afr J Geol 109:393–410

    Article  Google Scholar 

  • Arndt N, Jenner G, Ohnenstetter M, Deloule E, Wilson AH (2005) Trace elements in the Merensky Reef and adjacent norites Bushveld Complex South Africa. Miner Deposita 40:550–575

    Article  Google Scholar 

  • Ballhaus CG, Stumpfl EF (1986) Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contrib Mineral Petrol 94:193–204

    Article  Google Scholar 

  • Barnes SJ, Maier WD (2002) Platinum-group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex. J Petrol 43:103–128

    Article  Google Scholar 

  • Barnes SJ, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105:1491–1511

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NJ (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM et al (2003) TEMORA 1: a new zircon standard for U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Mineral-melt partitioning of uranium, thorium and their daughters. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Rev Mineral Geochem 52:59–123

  • Bottazzi P, Ottolini L, Vannucci R, Zanetti A (1994) An accurate procedure for the quantification of rare earth elements in silicates. In: Benninghoven A, Nihei Y, Shimizu R, Werner HW (eds) SIMS IX proceedings. Wileys, Chichester, pp 927–930

    Google Scholar 

  • Buick IS, Maas R, Gibson R (2001) Precise U-Pb titanite age constraints on the emplacement of the Bushveld Complex, South Africa. J Geol Soc Lond 158:3–6

    Article  Google Scholar 

  • Buick IS, Lana C, Gregory C (2011) A LA-ICP-MS and SHRIMP U/PB age constraint on the timing of REE mineralization associated with Bushveld granites. S Afr J Geol 114:1–14

    Google Scholar 

  • Cameron EN (1980) Evolution of the lower critical zone, central sector, eastern Bushveld Complex, and its chromite deposits. Econ Geol 75:845–871

    Article  Google Scholar 

  • Cawthorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39:1669–1687

    Article  Google Scholar 

  • Coggon, JA, Nowell GM. Pearson DG, Oberthür T, Lorand J-P, Melcher F, Parman SW (2012) The 190Pt–186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chem Geol 302–303:48–60

    Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:467–500

  • Davies G, Cawthorn RG (1983) Mineralogical data on multiple intrusions in the Rustenburg Layered Suite of the Bushveld Complex. Mineral Mag 48:469–480

    Article  Google Scholar 

  • Davies G, Cawthorn RC, Barton JM, Morton M (1980) Parental magma to the Bushveld Complex. Nature 287:33–35

    Article  Google Scholar 

  • De Waal SA, Armstrong RA (2000) The age of the Marble Hall diorite, its relationship to the Uitkomst Complex, and evidence for a new magma type associated with the Bushveld igneous event. S Afr J Geol 103:128–140

    Article  Google Scholar 

  • De Waal SA, Maier WD, Armstrong RA, Gauert CDK (2001) Parental magma and emplacement of the stratiform Uitkomst Complex, South Africa. Can Mineral 39:557–571

    Article  Google Scholar 

  • De Waal SA, Graham IT, Armstrong RA (2006) The Lindeques Drift and Heidelberg intrusions and the Roodekraal Complex, Vredefort, South Africa: comagmatic plutonic and volcanic products of a 2055 Ma ferrobasaltic magma. S Afr J Geol 109:279–300

    Article  Google Scholar 

  • Eales HV (2000) Implications of the chromium budget of the western limb of the Bushveld Complex. S Afr J Geol 103:141–150

    Article  Google Scholar 

  • Eales HV, Cawthorn RG (1996) The Bushveld Complex. In: Cawthorn RG (ed) Layered intrusions. Elsevier, Amsterdam, pp 181–229

    Chapter  Google Scholar 

  • Eales HV, Costin G (2012) Crustally contaminated komatiite: primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex. Econ Geol 107:645–665

    Article  Google Scholar 

  • Eales HV, Marsh JS, Mitchell AA, de Klerk WJ, Kruger FJ, Field M (1986) Some geochemical constraints upon models for the crystallization of the upper critical zone – main zone interval, northwestern Bushveld complex. Mineral Mag 50:567–582

    Article  Google Scholar 

  • Fedotova AA, Bibikova EV, Simakin SG (2008) Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geoch Intern 46:912–927

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215

    Article  Google Scholar 

  • Graham IT, De Waal SA, Armstrong RA (2005) New U–Pb SHRIMP zircon age for the Schurwedraai alkali granite: implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa. J Afr Earth Sci 43:537–548

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158:757–783

    Article  Google Scholar 

  • Harmer RE, Sharpe MR (1985) Field relations and Sr isotope systematics of the marginal rock of the Eastern Bushveld Complex. Econ Geol 80:813–837

    Article  Google Scholar 

  • Harmer RE, Armstrong RA (2000) Duration of Bushveld Complex (sensu lato) magmatizm: constraints from new SHRIMP zircon chronology. Abstracts of Workshop on the Bushveld Complex. 18–21 November 2000, Burgersdorf, pp 11–12

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    Article  Google Scholar 

  • Hollocher K, Ruiz J (1995) Major and trace element determinations on NIST glass standard reference materials 611, 612, 614 and 1834 by inductively coupled plasma mass spectrometry. Geostand Newslett 19:27–34

    Article  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:26–62

  • Hulbert LJ, von Gruenewaldt G (1985) Textural and compositional features of chromite in the lower and critical zones of the Bushveld Complex south of Potgietersrus. Econ Geol 80:872–895

    Article  Google Scholar 

  • Hutchinson D, Kinnaird JA, Schurmann LW (2004) Complex, multi-stage mineralization history in the southern sector of the Platreef, Bushveld Complex, RSA Abstracts of Geoscience Africa 2004. Univ Witwatersrand, Johannesburg, pp 293–294

    Google Scholar 

  • Irvine TN (1977) Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Article  Google Scholar 

  • Jochum KP, Dingwell DB, Rocholl A et al (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand Newslett 24:87–133

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M (2007) Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd: YAG laser and matrix-matched calibration. J Anal At Spectrom 22:112–121

    Article  Google Scholar 

  • Kinnaird JA, Kruger FJ, Nex PAM, Cawthorn RG (2002) The chromitite formation—a key to understand processes of formation and platinum enrichment. Appl Earth Sci (Trans Inst Min Metal B) 111:23–35

    Google Scholar 

  • Kinnaird JA, Hutchinson D, Schurmann L, Nex PAM, de Lange R (2005) Petrology and mineralization of the southern Platreef: northern limb of the Bushveld Complex, South Africa. Miner Depos 40:576–597

    Article  Google Scholar 

  • Kruger FJ (1989) The geochronology and Sr-isotope geochemistry of the Molopo Farms Complex, Bushveld Magmatic Province: a preliminary report. Molopo Botswana (Pty) Ltd Final Report for Prospecting Licences 14/85 and 38/90. Open File Report, Geol Surv Botswana

  • Kruger FJ (1994) The Sr-isotopic stratigraphy of the western Bushveld Complex. S Afr J Geol 97:393–398

    Google Scholar 

  • Letts S, Torsvik TH, Webb SJ, Ashwal LD (2009) Palaeomagnetism of the 2054 Ma Bushveld Complex (South Africa): implications for emplacement and cooling. Geophys J Int 179:850–872

    Article  Google Scholar 

  • Li C, Ripley EM, Sarkar A, Shin D, Maier WD (2005) Origin of phlogopite-orthopyroxene inclusions in chromites from the Merensky Reef of the Bushveld Complex, South Africa. Contrib Mineral Petrol 150:119–130

    Article  Google Scholar 

  • Ludwig KR (2000) SQUID 1.12. A user’s manual. A geochronological toolkit for Microsoft Excel. Geochron Center Spec Publ 2, Berkeley

  • Ludwig KR (2003) User’s Manual for ISOPLOT/Ex 3.00. A geochronological toolkit for Microsoft Excel. Geochron Center Spec Publ 4, Berkeley

  • Maier WD, Barnes S-J (1998) Concentrations of rare earth elements in silicate rocks of the Lower, Critical and Main Zones of the Bushveld Complex. Chem Geol 150:85–103

    Article  Google Scholar 

  • Maier WD, Barnes S-J (2008) Platinum-group elements in the UG1and UG2 chromitites, and the Bastard reef, at Impala platinum mine, western Bushveld Complex, South Africa: evidence for late magmatic cumulate instability and reef constitution. S Afr J Geol 111:159–176

    Article  Google Scholar 

  • Maier WD, Peltonen P, Grantham G, Mänttäri I (2003) A new 1.9 Ga age for the Trompsburg intrusion, South Africa. Earth Planet Sci Lett 212:351–360

    Article  Google Scholar 

  • Malitch KN, Belousova EA, Griffin WL, Badanina IY, Pearson NJ, Presnyakov SL, Tuganova EV (2010) Magmatic evolution of the ultramafic–mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U–Pb and Hf-isotope data on zircon. Contrib Mineral Petrol 159:753–768

    Article  Google Scholar 

  • Mathez EA (1995) Magmatic metasomatism and formation of the Merensky reef, Bushveld Complex. Contrib Mineral Petrol 119:277–286

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Plan Sci Lett 203:235–243

    Article  Google Scholar 

  • McCandless TE, Ruiz J (1991) Osmium isotopes and crustal sources for platinum-group mineralization in the Bushveld Complex, South Africa. Geology 19:1225–1228

    Article  Google Scholar 

  • McDonald I, Holwell DA, Armitage PEB (2005) Geochemistry and mineralogy of the Platreef and “Critical Zone” of the northern lobe of the Bushveld Complex, South Africa: implications for Bushveld stratigraphy and the development of PGE mineralisation. Miner Depos 40:526–549

    Article  Google Scholar 

  • McDonough WF, S-s S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mondal SK, Mathez EA (2007) Origin of the UG2 chromitite layer, Bushveld Complex. J Petrol 48:495–510

    Article  Google Scholar 

  • Naldrett AJ, Wilson A, Kinnaird J, Chunnett G (2009a) PGE tenor and metal ratios within and below the Merensky Reef, Bushveld Complex: implications for its genesis. J Petrol 50:625–659

    Article  Google Scholar 

  • Naldrett AJ, Kinnaird J, Wilson A, Yudovskaya M, McQuade S, Stanley C (2009b) Chromite composition and PGE content of Bushveld chromitites: Part 1—the Lower and Middle Groups. Appl Earth Sci (Trans Inst Min Metall B) 118B:131–161

    Article  Google Scholar 

  • Naldrett AJ, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G (2012) The application of MELTS to the formation of chromitites and related PGE mineralization in the Bushveld Complex and elsewhere. Miner Depos 47:209–232

    Article  Google Scholar 

  • Nomade S, Renne PR, Merkle RKW (2004) 40Ar/39Ar age constraints on ore deposition and cooling of the Bushveld Complex, South Africa. J Geol Soc Lond 161:411–420

    Article  Google Scholar 

  • Olsson JR, Söderlund U, Klausen MB, Ernst RE (2010) U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambrian Res 183:490–500

    Article  Google Scholar 

  • Pettke T, Audetat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia) Part II: evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR, Mueller AG, Hall GC (2007) Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrand basin, South Africa: constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology 35:931–934

    Article  Google Scholar 

  • Reisberg L, Tredoux M, Harris C, Coftier A, Chaumba J (2011) Re and Os distribution and Os isotope composition of the Platreef at the Sandsloot–Mogolakwena mine, Bushveld complex, South Africa. Chem Geol 281:352–363

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61

    Article  Google Scholar 

  • Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184:217–230

    Google Scholar 

  • Savelieva GN, Suslov PV, Larionov AN (2007) Vendian tectono-magmatic events in mantle ophiolitic complexes of the Polar Urals: U-Pb dating of zircon from chromitite. Geotectonics 41:105–113

    Article  Google Scholar 

  • Schoenberg R, Kruger FJ, Nägler TF, Meisel T, Kramers JD (1999) PGE enrichment in chromitite layers and the Merensky reef of the western Bushveld complex; a Re–Os and Rb–Sr isotope study. Earth Planet Sci Lett 172:49–64

    Article  Google Scholar 

  • Scoates JS, Friedman RM (2008) Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique. Econ Geol 103:465–471

    Article  Google Scholar 

  • Scoates JS, Wall CJ, Friedman RM, VanTongeren JA, Mathez EA (2011) Progress in resolving the duration of magmatism in the Paleoproterozoic Bushveld Complex. Abstr AGU Fall Meeting 2011, San-Francisco, USA, #51A-2501

  • Scoates JS, Wall CJ, Friedman RM, VanTongeren JA, Mathez EA (2012) Age of the Bushveld Complex. Abstr Goldschmidt Conference, Montreal, Canada

  • Scoon RG, Teigler B (1994) Platinum group element mineralisation in the critical zone of the western Bushveld Complex: 1. Sulphide-poor chromitites below the UG2. Econ Geol 89:1094–1121

    Article  Google Scholar 

  • Seabrook CL, Cawthorn RG, Kruger FJ (2005) The Merensky Reef, Bushveld Complex: mixing of minerals not mixing of magmas. Econ Geol 100:1191–1206

    Article  Google Scholar 

  • Sharpe MR (1985) Strontium isotope evidence for preserved density stratification in the main zone of the Bushveld Complex, South Africa. Nature 316:119–126

    Article  Google Scholar 

  • Smirnov VK, Sobolev AV, Batanova VG et al. (1995) Quantitative SIMS analysis of melt inclusions and host minerals for trace elements and H2O. EOS Trans. Spring Meet. Suppl. AGU 17, p 270

  • Spandler C, Mavrogenes J, Arculus R (2005) Origin of chromitites in layered intrusions: evidence from chromite-hosted melt inclusions from the Stillwater complex. Geology 33:893–896

    Article  Google Scholar 

  • Voordouw R, Gutzmer J, Beukes NJ (2009) Intrusive origin for Upper Group (UG1, UG2) stratiform chromitite seams in the Dwars River area, Bushveld Complex, South Africa. Mineral Petrol 97:75–94

    Article  Google Scholar 

  • Walraven F (1997) Geochronology of the Rooiberg Group, Transvaal Supergroup, South Africa. Information Circular 316. Economic Geology Research Unit, Univ Witwatersrand, Johannesburg, South Africa

  • Walraven F, Hattingh E (1993) Geochronology of the Nebo Granite, Bushveld Complex. S Afr J Geol 96:31–41

    Google Scholar 

  • Whitehouse MJ (2004) Multi-collector SIMS determination of trace lanthanides in zircon. Geostand Geoanal Res 28:195–201

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck W, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L et al (2004) Further characterization of the 91500 zircon crystal. Geostand Newslett 28:9–39

    Article  Google Scholar 

  • Willmore CC, Boudreau AE, Kruger FJ (2000) The halogen geochemistry of the Bushveld Complex, Republic of South Africa: implications for chalcophile element distribution in the Lower and Critical Zone. J Petrol 41:1517–1539

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibbe MA, Shanks WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

  • Wilson AH, Chunnett GC (2006) Trace element and platinum group element distributions and the genesis of the Merensky Reef, Western Bushveld Complex, South Africa. J Petrol 47:2369–2403

    Article  Google Scholar 

  • Wilson AHA (2012) A chill sequence to the Bushveld Complex: insight into the first stage of emplacement and implications for the parental magmas. J Petrol 53:1123–1168

    Article  Google Scholar 

  • Yudovskaya MA, Kinnaird JA (2010) Сhromite in the Platreef: occurrence and evolution of its chemical composition (northern limb of the Bushveld Complex). Miner Deposita 45:369–391

    Article  Google Scholar 

  • Yudovskaya MA, Kinnaird JA, Sobolev AV, Kuzmin DV, McDonald I, Wilson AH (2013) Petrogenesis of the Lower Zone olivine-rich cumulates beneath the Platreef and their correlation with recognized occurrences in the Bushveld Complex. Econ Geol in press

  • Zhitova LM, Borovikov AA, Borisenko AS, Kuchkin AM, Nevol’ko PA (2005) Hydrothermal fluid influence on the precious metal redistribution in the Critical Zone of the Bushveld Complex. Abstracts 10th Intern Plat Symp, Oulu, Finland, August 8–11, 2005. Geol Surv Finland, pp 610–613

  • Zhitova LM, Kamenetsky VS, Gora MP, Sharygin VV, Nigmatulina EN, Zhitov EY (2010) Heterogeneity of chromium spinels of the Merensky Reef as the evidence of their origin, Bushveld Complex, South Africa. Abstracts of 11th Intern Platinum Symp Sudbury, Canada, June 21–24, 2010. Ontario Geol Surv Misc Release–Data 269

Download references

Acknowledgements

We thank Adrian Colloty, James Winch and Fiona Scholes for the help with our sampling and logging. We are grateful to Gordon Chunnett for support of the study. Anglo Platinum is thanked for a permission to publish this paper. Marina Kuznetsova and Andrey Mokhov are acknowledged for the analytical assistance at IGEM RAS. Detailed comments by J. Scoates and T.R. Ireland on the earlier version of the manuscript were extremely useful. The authors would like to thank E. G. Grosch, J. Kosler and an anonymous reviewer for their helpful and insightful reviews. This study was financially supported by Anglo-Platinum through the THRIP (Technology and Human Resources for Industry Programme, South Africa), the NRF of South Africa and partly by the Russian Foundation for Basic Research through grant 11-05-00,014 to MY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Yudovskaya.

Additional information

Editorial handling: J. Kosler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudovskaya, M., Kinnaird, J., Naldrett, A.J. et al. Trace-element study and age dating of zircon from chromitites of the Bushveld Complex (South Africa). Miner Petrol 107, 915–942 (2013). https://doi.org/10.1007/s00710-013-0269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0269-3

Keywords

Navigation