Skip to main content
Log in

The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The crystal structure of natural magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle mine, San Juan County, U.S.A., has been determined by single-crystal X-ray diffraction analysis and refined to R obs = 0.0348. The mineral is monoclinic, crystallizing in the space group C2/m, with unit cell parameters a = 8.7005(5), b = 14.2541(6), c = 8.8433(5)Å, β = 104.408(5)°, V = 1062.24(9) Å3 and Z = 4. The structure consists of the structural sheets of zippeite topology, represented by a structure unit [(UO2)2O2(SO4)]2−, and an interlayer where two Mg2+ Φ6 octahedra are located. The crystal structure of natural magnesiozippeite shows considerable differences to the structure of previously reported synthetic analogue, namely in coordination of Mg2+ in the interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brandenburg K, Putz H (2005) DIAMOND Version 3. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.

  • Brown ID (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford

    Google Scholar 

  • Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–248

    Google Scholar 

  • Brown ID, Shannon RD (1973) Empirical bond-strength bond-length curves for oxides. Acta Crystallogr A29:266–282

    Google Scholar 

  • Brugger J, Burns PC, Meisser N (2003) Contribution to the mineralogy of acid drainage of uranium minerals: marécottite and the zippeite group. Amer Mineral 88:676–685

    Google Scholar 

  • Burns PC, Ewing RC, Hawthorne FC (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can Mineral 35:1551–1570

    Google Scholar 

  • Burns PC, Deely K, Hayden L (2003) The crystal chemistry of the zippeite group. Can Mineral 41:687–706

    Article  Google Scholar 

  • Clark RC, Reid JS (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr A51:887–897

    Google Scholar 

  • Frondel C, Ito J, Honea RM, Weeks AM (1976) Mineralogy of the zippeite-group. Can Mineral 14:429–436

    Google Scholar 

  • Haacke DF, Williams PA (1979) The aqueous chemistry of uranium minerals I. Divalent cation zippeites. Min Mag 43:539–541

    Article  Google Scholar 

  • Hoppe R (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Z Kristallogr 150:23–52

    Article  Google Scholar 

  • Kovba LM, Tabachenko NV, Serezhkin VN (1982) Synthesis and physico-chemical investigation of new uranyl hydroxosulphates. Doklady AN SSSR 266:1148–1152 (in Russian)

    Google Scholar 

  • Locock AJ, Burns PC, Duke MJM, Flynn TM (2004a) Monovalent cations in structures if the metaautunite group. Can Mineral 42:973–996

    Article  Google Scholar 

  • Locock AJ, Burns PC, Flynn TM (2004b) Divalent transition metals and magnesium in the structures that contain the autunite-type sheet. Can Mineral 42:1699–1718

    Article  Google Scholar 

  • Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 41:453–458

    Article  Google Scholar 

  • Palatinus L, Chapuis G (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Cryst 40:451–456

    Google Scholar 

  • Peeters OM, Vochten R, Blaton N (2008) The crystal structures of synthetic potassium – transition-metal zippeite-group phases. Can Mineral 46:173–182

    Article  Google Scholar 

  • Pekov IV, Levitskiy VV, Krivovichev SV, Zolotarev AA, Chukanov NV, Bryzgalov IA, Zadov AE (2012) New nickel-uranium-arsenic mineral species from the oxidation zone of the Belorechenskoye deposit, Northern Caucasus, Russia. I. Rauchite, Ni(UO2)2(AsO4)2·10H2O, a member of the autunite group. Eur J Min 24:913–922

    Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha

    Google Scholar 

  • Plášil J, Sejkora J, Čejka J, Novák M, Viñals J, Ondruš P, Veselovský F, Škácha P, Jehlička J, Goliáš V, Hloušek J (2010) Metarauchite, Ni(UO2)2(AsO4)2·8H2O, from Jáchymov, Czech Republic, and Schneeberg, Germany: A new member of the autunite group. Can Mineral 48:335–350

    Article  Google Scholar 

  • Plášil J, Mills SJ, Fejfarová K, Dušek M, Novák M, Škoda R, Čejka J, Sejkora J (2011a) The crystal structure of natural zippeite K1.85 H+ 0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, from Jáchymov, Czech Republic. Can Mineral 49:1089–1103

    Article  Google Scholar 

  • Plášil J, Dušek M, Novák M, Čejka J, Císařová I, Škoda R (2011b) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. Amer Mineral 96:983–991

    Article  Google Scholar 

  • Plášil J, Fejfarová K, Wallwork KS, Dušek M, Škoda R, Sejkora J, Čejka J, Veselovský F, Hloušek J, Meisser N, Brugger J (2012) Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12. Amer Mineral 97:1796–1803

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (πρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, California, pp 104–106

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Schindler M, Hawthorne FC (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. Can Mineral 46:467–501

    Article  Google Scholar 

  • Spitsyn V, Kovba L, Tabachenko VV, Tabachenko NV, Mikhaylov Y (1982) Structures of the basic uranyl salts and polyuranates. Russ Chem Bull 31:711–714

    Article  Google Scholar 

  • Suzuki Y, Sato T, Isobe H, Kogure T, Murakami T (2005) Dehydration procsses in the meta-autunite group minerals meta-autunite, metasaléeite, and metatorbernite. Amer Mineral 90:1308–1314

    Article  Google Scholar 

  • Vochten R, Van Haverbeke L, Van Springel K, Blaton N, Peeters OM (1995) The structure and physicochemical characteristics of synthetic zippeite. Can Mineral 33:1091–1101

    Google Scholar 

Download references

Acknowledgements

We would like to thank our colleague P. Škácha (Mining Museum, Příbram) for microphotography of the magnesiozippeite specimen. Juraj Majzlan (Friedrich-Schiller Universität, Jena) is acknowledged for SE image og magnesiozippeite and for discussion on the topic. Peter Burns (University of Notre Dame, U.S.A.) is highly acknowledged for providing us with the unpublished data for the synthetic Mn-zippeite-like compound and lot of useful information. Reviews by the two anonymous referees helped us to improve the manuscript considerably, as well as suggestions of the handling guest editor Manfred Wildner. The Premium Academiae of the Institute of Physics, ASCR v.v.i., the project P204/11/0809 of the Grant Agency of the Czech Republic and the EU-project “Research group for radioactive waste repository and nuclear safety” (CZ.1.07/2.3.00/20.0052) to RŠ are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Plášil.

Additional information

Editorial handling: M. Wildner

Dedicated to Prof. Josef Zemann in occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plášil, J., Fejfarová, K., Škoda, R. et al. The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.). Miner Petrol 107, 211–219 (2013). https://doi.org/10.1007/s00710-012-0241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0241-7

Keywords

Navigation