Mineralogy and Petrology

, Volume 104, Issue 1–2, pp 95–114 | Cite as

Late veins of C3 carbonatite intrusion from Jacupiranga complex (Southern Brazil): fluid and melt inclusions and mineralogy

  • E. Salvioli-MarianiEmail author
  • L. Toscani
  • D. Bersani
  • M. Oddone
  • R. Cancelliere
Original Paper


At Jacupiranga (Brazil) the latest manifestations of C3 carbonatite are veins and impregnations of sövite composition containing carbonates, Fe-oxides, apatite, phlogopite, olivine, clinohumite, pyrochlore, zirconolite. Apatite contains fluid inclusions l.s. of two types: (i) two-phase fluid inclusions of complex composition (H2O±CO2±NaCl±KCl±NaHCO3) with 17–50 vol.% of gas bubble, (ii) multi-phase melt inclusions of two types, carbonate-H2O rich and silicate-carbonate-H2O rich with very high homogenization temperatures up to 584°C and up to 1194°C, respectively. The coeval origin of fluid and melt inclusions allows to calculate the trapping pressures which indicate approximate depths of 30 to 60 km for the origin of the veins. Carbonatite veins contain Ba-poor tetra-ferriphlogopite of extreme composition which extends the compositional trend of the micas of Jacupiranga. The occurrence of zirconolite, Nb-rich pyrochlore and Ta-rich U-pyrochlore is mutually exclusive and related, probably, to the variation of fluorine content in the magmatic fluids.


Calcite Magnetite Olivine Apatite Fluid Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very grateful to Prof. Morbidelli who kindly supplied the studied samples. We would like to thank Prof. G. Venturelli and the anonymous reviewers of Mineralogy and Petrology for critical reading and helpful comments and suggestions on the manuscript. This research was financially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).

Supplementary material

710_2011_179_MOESM1_ESM.pdf (265 kb)
Fig. 1 Transmitted (A–H) and reflected (I–J) light microphotographs of minerals in the investigated samples. A: thin film of dolomite (Do) between apatite (Ap) and calcite (Cc) (C3). B: dolomite exsolution in calcite (C3, CO). C: late vein of Mg-calcite (Mg-Cc) containing rare strontianite and apatite and crossing early calcite and apatite crystals (C3). D: rounded calcite inclusion in euhedral apatite (C3). E: small euhedral apatite in dolomite (CJ). F: small vein of apatite in CJ. G: cluster of sub-rounded crystals of apatite in calcite (CO). H: poikilitic and partially absorbed magnetite (Mt) (CJ), the enclosed phases are apatite and calcite. I: exsolution and patches of ilmenite (Ilm, dark grey) in magnetite (light grey) (CO). J: magnetite containing ilmenite, and pyrrhotite (Prt) containing pentlandite (Ptd) and chalcopyrite (Clp) (C3). Bar = 200 μm (PDF 265 kb)
710_2011_179_MOESM2_ESM.pdf (354 kb)
Fig. 2 Back-scattered electron images performed by JEOL scanning electron microscope. A: rounded inclusion of calcite (Cc) in apatite (Ap) containing oriented small needles of strontianite (Str) (CO). B: late vein of Mg-calcite (Mg-Cc) with apatite and strontianite. D: a complex association of magnetite (Mt), ilmenite (Ilm), zirconolite (Zrl), apatite and calcite (CO). E: inclusion containing sphalerite (Sph), dolomite (Do), ilmenite, barite (Bar) in magnetite (CO). F: siderite (Syd), Cd-sphalerite (Cd-Sph), galena (Gln) and apatite, surrounded by apatite and calcite (CJ). G: pyrrhotite (Prt) with an oxidized rim of Mg-Fe-Ca-sulphate (Mln, melanterite group mineral) (C3). Bar = 20 μm (in C bar = 100 μm) (PDF 354 kb)
710_2011_179_MOESM3_ESM.pdf (24 kb)
ESM Table 1 (PDF 24 kb)
710_2011_179_MOESM4_ESM.pdf (17 kb)
ESM Table 2 (PDF 17 kb)
710_2011_179_MOESM5_ESM.pdf (17 kb)
ESM Table 3 (PDF 17 kb)
710_2011_179_MOESM6_ESM.pdf (18 kb)
ESM Table 4 (PDF 17 kb)
710_2011_179_MOESM7_ESM.pdf (22 kb)
ESM Table 5 (PDF 21 kb)


  1. Anders E, Grevesse N (1989) Abundance of the elements: meteoric and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  2. Arima M, Edgar AD (1981) Substitution mechanism and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib Mineral Petrol 77:288–295CrossRefGoogle Scholar
  3. Bakker RJ (1997) Clathrates: computer programs to calculate fluid inclusions V-X properties using clathrate melting temperatures. Comput Geosci 23:1–18CrossRefGoogle Scholar
  4. Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23CrossRefGoogle Scholar
  5. Bambi AM, Costanzo A, Melgarejo JC, Gonçalves AO, Alfonso P, Neto AB, Manuel J (2008) Evolution of pyrochlore in carbonatites: the Angola case. Rev Soc Española Mineral 9:43–44Google Scholar
  6. Bellatreccia F, Della Ventura G, Caprilli E, Williams CT, Parodi GC (1999) Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, São Paulo (Brazil). Min Mag 63:649–660CrossRefGoogle Scholar
  7. Binder G, Troll G (1989) Coupled anion substitution in natural carbon-bearing apatites. Contrib Mineral Petrol 101:394–401CrossRefGoogle Scholar
  8. Brigatti MF, Medici L, Poppi L, Vaccaro C (2001) Crystal chemistry of trioctahedral micas-1M from the Alto Paranaíba igneous province, Southeastern Brazil. Can Mineral 39:1333–1345CrossRefGoogle Scholar
  9. Brod JA, Gaspar JC, de Araùjo DP, Gibson SA, Thompson RN, Junqueira-Brod TC (2001) Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. J Asian Earth Sci 19:265–296CrossRefGoogle Scholar
  10. Bühn B (2008) The role of the volatile phase for REE and Y fractionation in low-silica carbonate magmas: implications from natural carbonatites, Namibia. Mineral Petrol 92:453–470CrossRefGoogle Scholar
  11. Bühn B, Wall F, Le Bas MJ (2001) Rare-earth element systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution. Contrib Mineral Petrol 141:572–591CrossRefGoogle Scholar
  12. Comin-Chiaramonti P, Gomes CB, Marques LS, Censi P, Ruberti E, Antonini P (2005) Carbonatites from southeastern Brazil: geochemistry, O-C, Sr-Nd-Pb isotopes and relationships with the magmatism from the Paranà-Angola-Namibia Province. In: Comin-Chiaramonti P, de Barros Gomes C (eds) Mesozoic to cenozoic alkaline magmatism in the Brazilian platform. Universidade de São Paulo, pp 657–688Google Scholar
  13. Costanzo A, Moore KR, Wall F, Feely M (2006) Fluid inclusions in apatite from Jacupiranga calcite carbonatites: evidence for a fluid-stratified carbonatite magma chamber. Lithos 91:208–228CrossRefGoogle Scholar
  14. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  15. Deer WA, Howie RA, Zussman J (1996) Non-silicates: sulphates, carbonates, phosphates, halides. Rock-forming minerals, vol 5B. Longmann, Essex, pp 297–334Google Scholar
  16. Gaspar JC (1989) Geologie et mineralogy du complexe carbonatique de Jacupiranga, Brésil. Ph. Thesis, University of OrleansGoogle Scholar
  17. Gaspar JC, Wyllie PJ (1982) Barium phlogopite from the Jacupiranga carbonatite, Brazil. Am Mineral 67:997–1000Google Scholar
  18. Gaspar JC, Wyllie PJ (1983a) Ilmenite (high Mg, Mn, Nb) in the carbonatites from the Jacupiranga complex, Brazil. Am Mineral 68:960–971Google Scholar
  19. Gaspar JC, Wyllie PJ (1983b) Magnetite in the carbonatites from the Jacupiranga complex, Brazil. Am Mineral 68:195–213Google Scholar
  20. Gaspar JC, Wyllie PJ (1987) The phlogopites from the Jacupiranga carbonatite intrusions. Mineral Petrol 36:121–134CrossRefGoogle Scholar
  21. Germann A (1989) Der Alkalikomplex von Jacupiranga, São Paulo/Brasilien. Mitteilungen zur Mineralogie und Lagerstättenkunde. PhD dissertation, RWTH Aachen 33, 204Google Scholar
  22. Germann A, Marker A, Friedrich G (1987) The alkaline complex of Jacupiranga, São Paulo/Brazil- Petrology and genetic considerations. Zentralblatt fur Geologie und Paläontologie, Teil I (7/8):807–818Google Scholar
  23. Giordani L, Meloni S, Oddone M (2008) Presenza di radionuclidi naturali ed artificiali nell’area Bosco Negri—3: distribuzione e migrazione di elementi maggiori ed in tracce nei suoli, risultati dell’analisi per attivazione neutronica sperimentale ed elaborazione statistica. Archivio Geobotanico 11(1–2):15–38Google Scholar
  24. Gittins J, Allen CR, Cooper AF (1975) Phlogopitization of pyroxenite; its bearing on the composition of carbonatite magmas. Geol Mag 112:503–507CrossRefGoogle Scholar
  25. Gittins J, Beckett MF, Jago BC (1990) Composition of the fluid phase accompanying carbonatite magmas: a critical examination. Am Mineral 75:1106–1109Google Scholar
  26. Hirano H, Kamitani M, Daitx EC (1987) Jacupiranga carbonatites in the São Paulo State, Brazil: their mode of occurrence. Report of International Research and Development Coopertion ITIT Project 8316, Japan, pp 74–95Google Scholar
  27. Hogarth DD (1977) Classification and nomenclature of the pyrochlore group. Am Mineral 62:403–410Google Scholar
  28. Jago BC, Gittins J (1993) Pyrochlore crystallization in carbonatites: the role of fluorine. S Afr J Geol 96:149–159Google Scholar
  29. Jiang SY, Wang RC, Xu XS, Zhao KD (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys Chem Earth 30:1020–1029CrossRefGoogle Scholar
  30. Jones JH, Walker D, Pickett DA, Murrell MT, Beattie P (1995) Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids. Geochim Cosmochim Acta 59(7):1307–1320CrossRefGoogle Scholar
  31. Keppler H (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib Mineral Petrol 114:479–488CrossRefGoogle Scholar
  32. Krasnova NI (2001) The Kovdor phlogopite deposit, Kola peninsula, Russia. Can Mineral 39:33–44CrossRefGoogle Scholar
  33. Lee MJ, Lee JI, Garcia D, Moutte J, Williams CT, Wall F, Kim Y (2006) Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochem J 40:1–13CrossRefGoogle Scholar
  34. Maruéjol P, Cuney M, Turpin L (1990) Magmatic and hydrothermal R.E.E. fractionation in the Xihuashan granites (SE China). Contrib Mineral Petrol 104:668–680CrossRefGoogle Scholar
  35. Melcher GC (1966) The carbonatites of Jacupiranga, São Paulo, Brazil. In: Tuttle OF, Gittins J (eds) Carbonatites. Wiley, New York, pp 169–181Google Scholar
  36. Mitchell RH (1978) Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranga carbonatite, São Paulo, Brazil. Am Mineral 63:544–547Google Scholar
  37. Morbidelli L, Gomes CB, Beccaluva L, Brotzu P, Conte AM, Ruberti E, Traversa G (1986) Mineralogical, petrological and geochemical studies of alkaline rocks from continental Brazil. 3. Fenitization of jacupirangite by carbonatite magmas in the Jacupiranga complex, SP. Periodico di Mineralogia 55:261–295Google Scholar
  38. Morbidelli L, Gomes CB, Beccaluva L, Brotzu P, Conte AM, Ruberti E, Traversa G (1995) Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil. Earth Sci Rev 39:135–168CrossRefGoogle Scholar
  39. Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775CrossRefGoogle Scholar
  40. Nickel EH (1992) Solid solutions in mineral nomenclature. Can Mineral 30:231–234Google Scholar
  41. Pudovkina ZV, Dubakina IS, Levedeva LS, Pyatenko YuA (1974) Study of Brazil zirkelite. Zapiski vses. Mineral Obshch 103:368–372Google Scholar
  42. Römer W, Kanig M, Pfisterer U (2002) The influence of lithology on hillslope development in the area of the Jacupiranga Alkaline Complex and its surroundings (São Paulo, Brazil). Catena 47:151–173CrossRefGoogle Scholar
  43. Ruberti E, Gomes CB, Comin-Chiaramonti P (2005) The alkaline magmatism from the Ponta Grossa Arch. In: Comin-Chiaramonti P, de Barros Gomes C (eds) Mesozoic to Cenozoic alkaline magmatism in the Brazilian platform. Universidade de São Paulo, pp 473–522Google Scholar
  44. Silvestroni P (1988) Fondamenti di chimica. Editoriale Veschi, MilanoGoogle Scholar
  45. Sinclair W, Ringwood AE (1981) Alpha-recoil damage in natural zirconolite and perovskite. Geochem J 15:229–243CrossRefGoogle Scholar
  46. Veksler IV, Nielsen TFD, Sokolov SV (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39:2015–2031CrossRefGoogle Scholar
  47. Wang Y, Li J, Lu J, Fan W (1982) Geochemical mechanism of Nb-, Ta-mineralization during the late stage of granite crystallization. Geochemistry 1(2):175–185Google Scholar
  48. Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium 2. Theoretical prediction of speciation in hydrothermal solutions to 350°C at saturation water vapour pressure. Chem Geol 88:99–125CrossRefGoogle Scholar
  49. Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and generation of sodic and potassic fenites. Min Mag 46:13–17CrossRefGoogle Scholar
  50. Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • E. Salvioli-Mariani
    • 1
    Email author
  • L. Toscani
    • 1
  • D. Bersani
    • 2
  • M. Oddone
    • 3
  • R. Cancelliere
    • 4
  1. 1.Dipartimento di Scienze della TerraUniversità di ParmaParmaItaly
  2. 2.Dipartimento di FisicaUniversità di ParmaParmaItaly
  3. 3.Dipartimento di Chimica GeneraleUniversità di PaviaPaviaItaly
  4. 4.NocetoItaly

Personalised recommendations