Skip to main content
Log in

Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Perama Hill deposit is a high-sulfidation Au-Ag-Te-Se epithermal system hosted in silicic- and argillic altered andesitic rocks and overlying sandstones, which were emplaced on the eastern margin of the Petrota graben, northeastern Greece. The deposit evolved from an early stage silica-pyrite rock and argillic alteration followed by the deposition of sulfide-, sulfosalt- and telluride-bearing quartz-barite veins and stockworks. Early ore formation is characterized by a high-sulfidation-type enargite-galena-bearing ore assemblage (consisting of enargite, watanabeite, Fe-free sphalerite, covellite, kesterite, bismuthinite, selenian bismuthinite, lillianite homologues, kawazulite-tetradymite, goldfieldite, and native gold), followed by the formation of an intermediate-sulfidation-type tennantite-bearing assemblage characterized by ferrian/zincian tennantite, tellurobismuthite, tetradymite, melonite, native tellurium, Au-Ag-tellurides (calaverite, krennerite, sylvanite, hessite, petzite, stützite), altaite and electrum. Quartz, barite, kaolinite, sericite and minor aluminum-phosphate-sulfate minerals are gangue minerals. Fluid inclusion data demonstrate that the ore system evolved from an initial high temperature (up to 330°C) and low salinity (up to 4.9 wt.% NaCl equiv.) fluid towards a cooler (200°C) and very low salinity (0.7 wt.% NaCl equiv.) hydrothermal fluid suggesting progressive cooling and dilution of the ore fluid. The ore minerals at Perama Hill reflect variable fS2 and fTe2 conditions during base and precious metal deposition. Early ore deposition took place at ~300°C, at logfS2 values between ≈−8.2 and −5.5, and logfTe2 from −11.8 and −7.8. Late ore deposition occurred at logfS2 = −11.8 to −9.8 and logfTe2 of ≈−9.2 and −7.8. These data and paragenetic studies indicate a shift towards higher logfTe2 and lower logfS2 and logfSe2 values for the mineralizing fluids with time. The kawazulite/tetradymitess-gold association at Perama Hill suggests that it formed from a sulfide melt in the Bi-Au-Se-Te system as Au was scavenged from the hydrothermal ore-forming fluid at elevated temperatures. The presence of tellurides, and Bi- and Sn-bearing minerals in the ore system is compatible with direct deposition of metals from the vapor phase of a degassing magmatic (porphyry) body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Afifi AM, Kelly WC, Essene EJ (1988) Phase relations among tellurides, sulfides and oxides: I. Thermochemical data and calculated equilibria. Econ Geol 83:377–394

    Article  Google Scholar 

  • Alderton DHM, Brameld FC (2006) Telluride mineralization at the Svetloye gold prospect, Khabarovsk Krai, eastern Russia. In: Cook NG, Özgenc I, Oyman T (eds) Au-Ag-Te-Se deposits, IGCP 486 field workshop, Izmir 24–29 September 2006, Proceedings, pp 1–5

  • Archer DG (1992) Thermodynamic properties of the NaCl+H2O system: 2. Thermodynamic properties of NaCl(aq), NaCl.2H2O(cr), and phase-equilibria. J Phys Chem Ref Data 21:793–829

    Article  Google Scholar 

  • Arikas K, Voudouris P (1998) Hydrothermal alterations and mineralizations of magmatic rocks in the southern Rhodope Massiv. Acta Vulcanol 10:353–365

    Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Barton PB Jr, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley Interscience, New York, pp 278–403

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determing the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Bodnar RJ (2003) Introduction to fluid inclusions. In: Samson IM, Anderson AJ, Marshall DD (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Can Short Course Ser 32:1–8

  • Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid inclusion systematics in epithermal systems. Rev Econ Geol 2:73–98

    Google Scholar 

  • Cabri LJ (1965) Phase relations in the Au-Ag-Te system and their mineralogical significance. Econ Geol 60:1569–1606

    Article  Google Scholar 

  • Chouinard A, Williams-Jones AE, Leonardson RW, Hodgson GJ, Silva P, Téllez C, Vega J, Rojas F (2005) Geology and genesis of the multistage high-sulfidation epithermal Pascua Au-Ag-Cu deposit, Chile and Argentina. Econ Geol 100:463–490

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ, Damian G, Damian F (2004) Telluride and sulfosalt associations at Sǎcǎrîmb. In: Cook NJ, Ciobanu CL (eds) Au-Ag-telluride deposits of the Golden Quadrilateral, Apuseni Mts., Romania, IAGOD Guidebook Ser 12:145–186

  • Cook N (1997) Bismuth and bismuth-antimony sulfosalts from Neogene vein mineralization, Baia Borşa area, Maramureş, Romania. Mineral Mag 61:87–409

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL (2004) Bismuth tellurides and sulfosalts from the Larga hydrothermal system, Metaliferi Mts, Romania: Paragenesis and genetic significance. Mineral Mag 68:301–321

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Wagner T, Stanley CJ (2007) Minerals of the system Bi-Te-Se-S related to the tetradymite archetype: review of classification and compositional variation. Can Mineral 45:665–708

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Spry PG, Voudouris P, the participants of IGCP-486 (2009) Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes 32:249–263

    Google Scholar 

  • Cooke DR, McPhail DC (2001) Epithermal Au-Ag-Te mineralization, Acupan, Baguio District, Philippines: numerical simulations of mineral deposition. Econ Geol 96:109–131

    Article  Google Scholar 

  • Dzikowski T, Groat LA, Jambor JL (2006) The symmetry and crystal structure of gorceixite, BaAl3[PO3(O, OH)]2(OH)6, a member of the alunite super group. Can Mineral 44:951–958

    Article  Google Scholar 

  • Evans L (2004) Report on Perama Hill gold deposit, Mineral resource estimate, Greece, www.frontierpacific.com/pdf/report-perama.pdf

  • Fadda S, Fiori M, Grillo SM (2007) Genetic aspects of “Sa Perrima” occurrence at Furtei gold deposit, Sardinia, Italy: mineralogical features and ore forming conditions. Geol Soc Amer Progr Abstr 234-15

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper and Row, New York

    Google Scholar 

  • Hague PF (1993) The structural and volcanic evolution of tertiary basins along the southern margin of the Rhodope Massif, northeastern Greece. Dissertation, University of Southampton

  • Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404

    Article  Google Scholar 

  • Hedenquist JW, Arribas AR, Gonzalez-Urien E (2000) Exploration for epithermal gold deposits. Rev Econ Geol 13:245–277

    Google Scholar 

  • Heinrich CA (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineral Depos 39:864–889

    Article  Google Scholar 

  • Henley RW, Berger BR (2011) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization. Ore Geol Rev 39:53–74

    Article  Google Scholar 

  • Henley RW, Truesdell AH, Barton PB Jr, Whitney JA (1984) Fluid-mineral equilibria in hydrothermal systems. Rev Econ Geol 1:267

    Google Scholar 

  • Innocenti F, Kolios N, Manetti O, Mazzuoli R, Peccerilo G, Rita F, Villari L (1984) Evolution and geodynamic significance of the Tertiary orogenic volcanism in northeastern Greece. Bull Volc 47:25–37

    Article  Google Scholar 

  • Jannas RR, Beane RE, Ahler BA, Brosnahan DR (1990) Gold and copper mineralization at the El Indio deposit, Chile. J Geoch Expl 36:233–266

    Article  Google Scholar 

  • Jensen EP, Barton MD (2000) Gold deposits related to alkaline magmatism. Rev Econ Geol 13:279–314

    Google Scholar 

  • Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean region. Int J Earth Sci 99:109–138

    Article  Google Scholar 

  • Juras S, Miller R, Perkins P (2010) Technical report of the Perama Hill project, Thrace. Eldorado Gold Corporation, Greece, p 144

    Google Scholar 

  • Khashgerel B, Kavalieris I, Hayashi KI (2008) Mineralogy, textures, and whole-rock geochermistry of advanced argillic alteration: Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi mineral district, Mongolia. Mineral Deposita 43:913–932

    Article  Google Scholar 

  • Kouzmanov K, Bogdanov K, Ramboz C (2005) Te- and Bi-bearing minerals in the Elshitsa and Radka epithermal deposits, Central Srednogorie, Bulgaria: Mineralogy and genetical features. In: Cook N, Bonev I (eds) Au-Ag-Te-Se deposits, Geochem Mineral Petrol 43:108–112

  • Kovalenker VA, Troneva NV (1980) On the gold-bearing fahlore. 12th Symposium International Mineralogical Association, Orléans, France pp 75–83

  • Kucha H, Mochnaka K (1986) Preliminary report on bismuth minerals from the Gierczyn tin deposit, Lower Silesia, Poland. Miner Polonica 17:55–64

    Google Scholar 

  • Lescuyer JL, Bailly L, Cassard D, Lips ALW, Piantone P, McAlister M (2003) Sediment-hosted gold in south-eastern Europe: the epithermal deposit of Perama, Thrace, Greece. In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 499–502

    Google Scholar 

  • Marchev P, Kaiser-Rohrmeier M, Heinrich Ch, Ovtcharova M, von Quadt A, Raicheva R (2005) Hydrothermal ore deposits related to post-orogenic extentional magmatism and core complex formation: the Rhodope Massif of Bulgaria and Greece. Ore Geol Rev 27:53–89

    Article  Google Scholar 

  • Mavrogenes J, Henley RW, Reyes AG, Berger B (2010) Sulfosalt melets: evidence of high-temperature vapor transport of metals in the formation of high-sulfidation lode gold deposits. Econ Geol 105:257–262

    Article  Google Scholar 

  • McAlister M, Hammond JM, Normand D, Kampasakalis M (1999) Discovery case history for the Perama Hill gold deposit, Greece. In: Currie D, Nielsen K (eds) New generation gold mines’99, Case Histories of Discovery. Austral Min Found Conf Proc Perth pp 39–49

  • Melfos V, Vavelidis M, Christofides G, Seidel E (2002) Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineral Dep 37:648–668

    Article  Google Scholar 

  • Melfos V, Vavelidis M, Bogdanov K (2003) Occurrence, mineralogy and chemical composition of primary gold from Tertiary ore mineralisations in the Rhodope massif (Greece-Bulgaria). In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 1201–1204

    Google Scholar 

  • Michael C, Dimitroula M (2004) Hydrothermal alteration and mineralization of the Petrota epithermal systems (W. Thrace, Greece). Bull Geol Soc Greece 36:369–376

    Google Scholar 

  • Mills KC (1974) Thermodynamic data for inorganic sulfides, selenides and tellurides. Butterworths, London

    Google Scholar 

  • Moëlo Y, Makovicky E, Mozgova NN, Jambor JL, Cook N, Pring A, Paar W, Nickel EH, Graeser S, Karup-Møller S, Balic-Žunic T, Mumme WG, Vurro F, Topa D, Bindi L, Bente K, Shimizu M (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur J Mineral 20:7–46

    Article  Google Scholar 

  • Moritz R, Benkhelfa F (2009) Fluids in high-sulfidation epithermal ore deposits: constraints from infrared microthermometry of enargite-hosted fluid inclusions. In: Williams P et al (eds) Smart science for exploration and mining, Proc 10th SGA meeting, Townsville, Australia, August 2009, pp 533–535

  • Moritz R, Márton I, Ortelli M, Marchev P, Voudouris P, Bonev N, Spikings R, Cosca M (2010) A review of age constraints of epithermal precious and base metal deposits of the Tertiary Eastern Rhodopes: coincidence with Late Eocene-Early Oligocene tectonic plate reorganization along the Tethys. Proceed. 14th Congress of the Carpathian Balkan Geological Association, Thessaloniki, Greece, pp 351–358

  • Pals DW, Spry PG (2003) Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji. Mineral Petrol 79:285–307

    Article  Google Scholar 

  • Perugini D, Poli G, Christofides G, Eleftheriadis G, Koroneos A, Soldatos T (2004) Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications. Geol J 39:63–80

    Article  Google Scholar 

  • Pósfai M, Buseck PR (1998) Relationships between microstructure and composition in enargite and luzonite. Amer Mineral 83:373–382

    Google Scholar 

  • Pudack C, Halter WE, Heinrich CA, Pettke T (2009) Evolution of magmatic vapor to gold-rich epithermal liquid: the porphyry to epithermal transition at Nevados de Famatina, northwest Argentina. Econ Geol 104:449–477

    Article  Google Scholar 

  • Ricou LE, Burg JP, Godfriaux I, Ivanov Z (1998) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin Acta 11:285–309

    Article  Google Scholar 

  • Ruggieri G, Lattanzi P, Luxoro SS, Dessi R, Belvenuti M, Tanelli G (1997) Geology, mineralogy and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy. Econ Geol 92:1–19

    Article  Google Scholar 

  • Shepherd T, Rankin A, Alderton D (1985) A practical guide to fluid inclusion studies. Blackie and Son, Glasgow

    Google Scholar 

  • Shimizu M, Kato A, Matsubara S, Criddle AJ, Stanley CJ (1993) Watanabeite, Cu4(As, Sb)2Ss, a new mineral from the Teine mine, Sapporo, Hokkaido, Japan. Mineral Mag 57:643–649

    Article  Google Scholar 

  • Shimizu M, Shimizu M, Furuhashi T, Harada A, Cook N (2008) Indium mineralization in epithermal Au-Ag-Cu-Mn-Te-(Se-Bi-Sn-Mo-In) vein-type deposits of the Kawazu (Rendaiji) mine, Shizuoka Prefecture, Japan. Intern Geol Congr Olso, MRD-09 Au-Ag-telluride-selenide deposits, Abstract

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Soc Econ Geol Spec Publ 10:315–343

    Google Scholar 

  • Skarpelis N, Voudouris P, Arikas K (1999) Exploration for epithermal gold in SW Thrace, Greece: new target areas. In: Stanley CJ et al (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp 589–592

    Google Scholar 

  • Skarpelis N, Triantafyllidis S, Falalakis G (2006) The Perama intermediate sulfidation epithermal Au system (Thrace, Greece): Hypogene mineralogy and supergene alteration. Abstract Volume of the Conference “Neogene magmatism of the Central Aegean and adjacent areas: Petrology, tectonics, geodynamics, mineral resources and environment, Milos island, Greece, p 37

  • So CS, Dunchenko VYa, Yun ST, Park ME, Choi SG, Shelton KL (1995) Te- and Se-bearing epithermal Au-Ag mineralization, Prasolovskoye, Kunashir Island, Kuril Island arc. Econ Geol 90:105–117

    Article  Google Scholar 

  • Spry PG, Foster F, Truckle JS, Chadwick TH (1997) The mineralogy of the Golden Sunlight gold-silver telluride deposit, Whitehall, Montana, U.S.A. Mineral Petrol 59:143–164

    Article  Google Scholar 

  • Stoffregen RE, Alpers CN (1987) Woodhouseite and Svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. Can Mineral 25:201–211

    Google Scholar 

  • Tooth B, Brugger J, Ciobanu C, Liu W (2008) Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geol 36:815–818

    Article  Google Scholar 

  • Trudu AG, Knittel U (1998) Crystallography, mineral chemistry and chemical nomenclature of goldfieldite, the tellurian member of the tetrahedrite solid-solution series. Can Mineral 36:1115–1137

    Google Scholar 

  • Voudouris P (2006) A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece. Mineral Petrol 87:241–275

    Article  Google Scholar 

  • Voudouris P (2011) Conditions of formation of the Mavrokoryfi high-sulfidation epithermal Cu-Ag-Au-Te mineralization (Petrota Graben, NE Greece). Mineral Petrol 101:97–113

    Article  Google Scholar 

  • Voudouris P, Skarpelis N (1998) Epithermal gold-silver mineralization in Perama (Thrace) and Lemnos areas. Bull Geol Soc Greece 32:125–135

    Google Scholar 

  • Voudouris P, Papavassiliou C, Alfieris D, Falalakis G (2007) Gold-silver tellurides and bismuth sulfosalts in the high-intermediate sulfidation Perama Hill deposit, western Thrace (NE Greece). Geol Survey Finland Guide 53:77–84

    Google Scholar 

  • Watanabe Y, Hedenquist JW (2001) Mineralogical and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Econ Geol 96:1775–1797

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperarutes and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350

    Article  Google Scholar 

Download references

Acknowledgements

For assistence with EPMA and SEM work, we thank Stefanie Heidrich and Evangelos Michailidis, respectively. This manuscript was greatly improved by the comments of Prof. G. Ruggieri and an anonymous reviewer. Associate Editor Prof. P. Garofalo and Editors Prof. Dr. R. Abart and Prof. Dr. J. Raith are especially thanked for editorial handling and their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Christos Voudouris.

Additional information

Editorial handling: S. Garofalo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voudouris, P.C., Melfos, V., Spry, P.G. et al. Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece. Miner Petrol 103, 79–100 (2011). https://doi.org/10.1007/s00710-011-0160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-011-0160-z

Keywords

Navigation