Skip to main content

Geochemistry of microgranular enclaves in Aligoodarz Jurassic arc pluton, western Iran: implications for enclave generation by rapid crystallization of cogenetic granitoid magma

Abstract

Microgranular enclaves are common in the Jurassic Aligoodarz granitoids of western Iran. Enclaves Enclosed in Granodiorite (EEG) and Enclaves Enclosed in Tonalite (EET) are different but they overlap their hosts on variation diagrams. The EEG is compositionally intermediate between tonalite and granodiorite. Mixing between tonalitic and granodioritic magmas and fractional crystallization are two models examined as the origin of the EEG. Field, textural, mineralogical and chemical observations suggest that chemical equilibration, common in magma mixing, was not attained between the EEG and its host. This, together with other observations does not support magma mixing as a mechanism for forming the EEG. Alternatively, excessive nucleation of biotite ± Fe-Ti-oxides ± amphibole by rapid cooling at borders of a shallow magma chamber and later fragmentation and dispersal by dynamic arc plutonism best explains the EEG. However, channeling of a new magma into the nearly solid tonalitic host explains formation of the EET.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Ahmadi Khalaji AA, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. J Asian Earth Sci 29:859–877

    Article  Google Scholar 

  • Alavi M (1991) Tectonic map of the Middle East. Geological Survey of Iran, scale 1:2,900,000

  • Alfred T, Anderson JR (1984) Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. Am Miner 69:660–676

    Google Scholar 

  • Allen CM (1991) Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical and isotopic evidence. Am Miner 76:574–588

    Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF, and U(qz) procedures. In: Newbury DE (ed) Microbeam analysis-1988. San Francisco Press, San Francisco, pp 239–246

    Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes –a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    Google Scholar 

  • Barbarin B (1991) Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada Batholith, California. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amesterdam, pp 135–153

    Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 88:155–177

    Article  Google Scholar 

  • Barbarin B, Didier J (1991) Conclusions: enclaves and granite petrology. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amesterdam, pp 545–549

    Google Scholar 

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. T Roy Soc Edin-Earth 83:145–153

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granite and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Bébien J (1991) Enclaves in plagiogranite of the Guevgueli ophiolitic complex, Macedonia, Greece. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amesterdam, pp 205–229

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoids of the Adamelo Massif, Italy. J Petrol 33:1039–1104

    Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–39

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, pp 63–114

  • Castro A, Mereno-Ventas I, De La Rosa JD (1990) Microgranular enclaves as indicators of hybridization processes in granitoid rocks. Hercynian Belt, Spain. Wally Pitcher Conference, University of Liverpool, January 1990. Geol J 25:391–404

    Article  Google Scholar 

  • Castro A, Moreno-Ventas I, De La Rosa JD (1991) H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Sci 31:237–253

    Article  Google Scholar 

  • Chappell BW (1978) Granitoids from the Moonbi district, New England Batholith, Eastern Australia. J Geol Soc Aust 25:267–283

    Google Scholar 

  • Chappell BW (1996) Magma mixing and the production of compositional variation within granite suites: evidence from the granite of Southeastern Australia. J Petrol 37:449–470

    Article  Google Scholar 

  • Chappell BW, White AJR, Williams IS, Wyborn D, Wyborn LAI (2000) Lachlan Fold Belt granite revisited: high- and low-temperature granite and their implications. Aust J Earth Sci 47:123–138

    Article  Google Scholar 

  • Chen YD, Price RC, White AJR (1989) Inclusions in three S–type granite from Southeastern Australia. J Petrol 30:1181–1218

    Google Scholar 

  • Chen B, Chen ZC, Jahn BM (2009) Origin of mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos 110:343–358

    Article  Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Lithos 88:354–371

    Google Scholar 

  • Clemens JD, Wall VJ (1988) Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos 21:53–66

    Article  Google Scholar 

  • Cloos E (1936) Der Sierra-Nevada-pluton in Californien. Neues Jahrb Geol Palaontol-Abh B76:355–450

    Google Scholar 

  • Dahlquist JA (2002) Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. J South Am Earth Sci 15:643–655

    Article  Google Scholar 

  • Didier J (1973) Granite and their enclaves. Elsevier, London

    Google Scholar 

  • Didier J (1984) The problem of enclaves in granitic rocks, a review of recent ideas on their origin. In: Xu KQ, Tu GC (eds) Geology of granite and their metallogenetic relations, proceedings international symposium, Nanjing, October 1982. Science Press, Beijing, pp 137–144

    Google Scholar 

  • Didier J, Barbarin B (1991) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amsterdam

    Google Scholar 

  • Dodge FCW, Kistler RW (1990) Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. J Geophys Res 95:17841–17848

    Article  Google Scholar 

  • Donaire T, Pascual E, Pin C, Duthou JL (2005) Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contrib Mineral Petrol 149:247–265

    Article  Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra Nevada batholith, California. J Petrol 31:853–881

    Google Scholar 

  • Esna-Ashari A, Hassanzadeh J, Wernicke BP, Achmitt AK, Axen G, Horton B (2009) Middle Jurassic flare-up and cretaceous magmatic lull in the central Sanandaj-Sirjan arc, Iran: analogy with the southwestern United States. GSA Annual Meeting, October 2009

  • Feeley TC, Dungan MA (1996) Compositional and dynamic controls on mafic–silicic interactions at continental arc volcanoes: evidence from Cordon El Guadal, Tatara San Pedro Complex, Chile. J Petrol 37:1547–1577

    Article  Google Scholar 

  • Feeley TC, Wilson LF, Underwood SJ (2008) Distribution and compositions magmatic inclusions in the Mount Helen dome, Lassen volcanic center, California: insights into magma chamber processes. Lithos 106:173–189

    Article  Google Scholar 

  • Fershtater GB, Borodina NS (1977) Petrology of autholiths in granitic rocks. Int Geol Rev 19:458–468

    Article  Google Scholar 

  • Fershtater GB, Borodina NS (1991) Enclaves in the Hercynian granitoids of the Ural Mountains, USSR. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amsterdam, pp 83–94

    Google Scholar 

  • Flinders J, Clemens JD (1995) Non-linear dynamics and the distribution and compositions of enclaves in granitoid magmas. In: Brown M, Piccoli PM (eds) The origin of granite and related rocks. University of Maryland

  • Fourcade S, Allègre CJ (1981) Trace element behavior in granite genesis: a case study. The calc-alkaline plutonic association from the Quérigut complex (Pyrenees, France). Contrib Mineral Petrol 76:177–195

    Article  Google Scholar 

  • Frost TP, Mahood GA (1987) Field, chemical and physical constraints on mafic-felsic magma interaction in the Lamark granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291

    Article  Google Scholar 

  • Furman T, Spera FJ (1985) Commingling of acid and basic magma with implications for the origin of mafic I-type xenolith: field and petrochemical relations of an unusual dike complex at Eagle Lake, Sequoia National Park, California, USA. J Volcanol Geotherm Res 24:151–178

    Article  Google Scholar 

  • Gromet LP, Silver LT (1987) REE variations across the Peninsular Ranges Batholith; implications for batholithic petrogenesis and crustal growth in magmatic arcs. J Petrol 28:75–125

    Google Scholar 

  • Holden P, Halliday AN, Stephens WE, Henney PJ (1991) Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma. Chem Geol 92:135–152

    Article  Google Scholar 

  • Ilbeyli N, Pearce JA (2005) Petrogenesis of igneous enclaves in plutonic rocks of the Central Anatolian Crystalline Complex, Turkey. Int Geol Rev 47:1011–1034

    Article  Google Scholar 

  • Keskin M (2002) FC-modeler: a Microsoft Excel spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems. Comput Geosci 28:919–928

    Article  Google Scholar 

  • Kumar S, Rino V (2006) Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib Mineral Petrol 152:591–609

    Article  Google Scholar 

  • Masoudi F (1997) Contact metamorphism and pegmatite development in the SW of Arak, Iran. Dissertation, University of Leeds

  • Naney MT, Swanson SE (1980) The effect of Fe and Mg on crystallization in granitic systems. Am Miner 65:639–653

    Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Miner 77:1242–1249

    Google Scholar 

  • Pabst A (1928) Observations on inclusions in the granitic rocks of the Sierra Nevada. Univ Calif Publ Geol Sci 17:325–386

    Google Scholar 

  • Pascual E, Donaire T, Pin C (2008) The significance of microgranular enclaves in assessing the magmatic evolution of a high-level composite batholith: a case on the Los Pedroches Batholith, Iberian Massif, Spain. Geochem J 42:177–198

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Perugini D, Poli G, Christofides G, Eleftheriadis G (2003) Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. Mineral Petrol 78:173–200

    Article  Google Scholar 

  • Petrelli M, Poli G, Perugini D, Peccerillo A (2005) Petrograph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosyst. doi:10.1029/2005GC000932

    Google Scholar 

  • Phillips JA (1880) On concretionary patches and fragments of other rocks contained in granite. J Geol Soc 36:1–21

    Google Scholar 

  • Phillips GN, Wall VJ, Clemens JD (1981) Petrology of the Strathbogie batholith: a cordierite-bearing granite. Can Mineral 19:47–63

    Google Scholar 

  • Pin C, Binon M, Belin J, Barbarin B, Clemens JD (1990) Origin of microgranular enclaves in granitoids: equivocal Sr–Nd evidence from Hercynian rocks in the Massif Central (France). J Geophys Res 95:17821–17828

    Article  Google Scholar 

  • Platevoet B, Bonin B (1991) Enclaves and mafic-felsic associations in the Permian alkaline province of Corsica, France: physical and chemical interactions between coeval magmas. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amesterdam, pp 191–204

    Google Scholar 

  • Romick JD, Kay SM, Kay RM (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tehpra from the central Aleutians, Alaska. Contrib Mineral Petrol 112:101–118

    Article  Google Scholar 

  • Ruttner A, Stöcklin J (1967) Geological map of Iran. Geological Survey of Iran, scale 1:1000,000

  • Sawka WN, Chappell BW (1988) Fractionation of uranium, thorium and rare earth elements in a vertically zoned granodiorite: implications for heat production distributions in the Sierra Nevada batholith, California, U.S.A. Geochim Cosmochim Acta 52:1131–1143

    Article  Google Scholar 

  • Sengör AMC (1990) A new model for the late Paleozoic–Mesozoic tectonic evolution of Iran and implications for Oman. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region, Geological Society of London, Special Publication 22, pp 278–281

  • Shahbazi H, Siebel W, Pourmoafee M, Ghorbani M, Sepahi AA, Shang CK, Vousoughi Abedini M (2010) Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): New evidence for Jurassic magmatism. J Asian Earth Sci, accepted paper

  • Silva MMVG, Neiva AMR, Whitehouse MJ (2000) Geochemistry of enclaves and host granite from the Nelas area, central Portugal. Lithos 50:153–170

    Article  Google Scholar 

  • Singer BS (1993) Plagioclase zoning in mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc, Alaska. Am Miner 78:143–157

    Google Scholar 

  • Stephens WE, Holden P, Henney PJ (1991) Microdioritic enclaves within the Scottish Caledonian granitoids and their significance for crustal magmatism. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology, Developments in petrology 13. Elsevier, Amesterdam, pp 125–134

    Google Scholar 

  • Streckeisen AL (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–34

    Article  Google Scholar 

  • Tepper JH, Kuehner SM (2003) Geochemistry of mafic enclaves and host granitoids from the Chilliwack batholith, Washintong: chemical exchange processes between coexisting mafic and felsic magmas and implications for the interpretation of enclave chemical traits. J Geol 112:349–367

    Article  Google Scholar 

  • Troll VR, Donaldson CH, Emeleus CH (2004) Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Center, Scotland. Contrib Mineral Petrol 147:722–739

    Article  Google Scholar 

  • Valizadeh MV, Cantagrel JM (1975) Premieres donnees radiometriques (K-Ar et Rb-Sr) sur les micas du complexe magmatique du Mont Alvand pres Hamedan (Iran Occidental). Comptes Rendus Hebdomadares des Seances de l’Academie des Sciences, Serie D, Sciences Naturelles 281:1083–1086

    Google Scholar 

  • Vernon RH (1983) Restite, xenoliths and microgranitoid enclaves in granite. J Proc R Soc NSW 116:77–103

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves: globules of hybrid magma quenched in a plutonic environment. Nature 304:438–439

    Article  Google Scholar 

  • Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res 95:17849–17859

    Article  Google Scholar 

  • Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology 13. Elsevier, Amsterdam, pp 277–291

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • White AJR, Chappell BW, Wyborn D (1999) Application of the restite model to the Deddick granodiorite and its enclaves—a reinterpretation of the observations and data of Maas et al. J Petrol 40:413–421

    Article  Google Scholar 

  • Wiebe RA (1968) Plagioclase stratigraphy: a record of magmatic conditions and events in a granite stock. Am J Sci 266:690–703

    Article  Google Scholar 

  • Wiebe RA (1973) Relations between coexisting basaltic and granitic magmas in a composite dike. Am J Sci 273:130–151

    Article  Google Scholar 

  • Wiebe RA, Smith D, Sturn M, King EM, Seckler MS (1997) Enclaves in the Cadillac mountain granite (Coastal Maine): samples of hybrid magma from the base of the chamber. J Petrol 38:393–423

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Chapman and Hall, London

    Book  Google Scholar 

  • Wyllie PJ, Cox KG, Biggar GM (1962) The habit of apatite in synthetic systems and igneous rocks. J Petrol 3:238–243

    Google Scholar 

Download references

Acknowledgments

Constructive criticisms from Teodosio Donaire, Finger Fritz and Georg Hoinkes have helped to improve the manuscript. Riccardo Vannucci from University of Pavia, Italy is also acknowledged for his helps. Support for this work was provided by the Iran National Science Foundation (INSF), Grant no. 87020210, and Tectonics Observatory of California Institute of Technology, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Hassanzadeh.

Additional information

Editorial handling: R. Abart

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Esna-Ashari, A., Hassanzadeh, J. & Valizadeh, MV. Geochemistry of microgranular enclaves in Aligoodarz Jurassic arc pluton, western Iran: implications for enclave generation by rapid crystallization of cogenetic granitoid magma. Miner Petrol 101, 195–216 (2011). https://doi.org/10.1007/s00710-011-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-011-0149-7

Keywords