Skip to main content

Advertisement

Log in

U–Pb isotopic ages and Hf isotope composition of zircons in Variscan gabbros from central Spain: evidence of variable crustal contamination

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Ion microprobe U–Pb analyses of zircons from three gabbroic intrusions from the Spanish Central System (SCS) (Talavera, La Solanilla and Navahermosa) yield Variscan ages (300 to 305 Ma) in agreement with recent studies. Only two zircon crystals from La Solanilla massif gave slightly discordant Paleoproterozoic ages (1,848 and 2,010 Ma). Hf isotope data show a relatively large variation with the juvenile end-members showing ɛHfi values as high as +3.6 to +6.9 and +1.5 to +2.9 in the Navahermosa and Talavera gabbros, respectively. These positive ɛHfi values up to +6.9 might represent the composition of the subcontinental mantle which generates these SCS gabbros. This ɛHfi range is clearly below depleted mantle values suggesting the involvement of enriched mantle components on the origin of these Variscan gabbros, and is consistent with previous whole-rock studies. The presence of zircons with negative ɛHfi values suggest variable, but significant, crustal contamination of the gabbros, mainly by mixing with coeval granite magmas. Inherited Paleoproterozoic zircons of La Solanilla gabbros have similar trace element composition (e.g. Th/U ratios), but more evolved Hf-isotope signatures than associated Variscan zircons. Similar inherited ages have been recorded in zircons from coeval Variscan granitoids from the Central Iberian Zone. Granitic rocks have Nd model ages (TDM) predominantly in the range of 1.4 to 1.6 Ga, suggesting a juvenile addition during the Proterozoic. However, Hf crustal model ages of xenocrystic Proterozoic zircons in La Solanilla gabbro indicate the presence of reworked Archean protoliths (TDM2 model ages of 3.0 to 3.2 Ga) incorporated into the hybridized mafic magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen T, Griffin WL, Pearson NJ (2002) Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. J Petrol 43:1725–1747

    Article  Google Scholar 

  • Austrheim H, Putnis CV, Engivk AK, Putnis A (2008) Zircon coronas around Fe–Ti oxides: a physical reference frame for metamorphic and metasomatic reactions. Contrib Mineral Petrol 156:517–527

    Article  Google Scholar 

  • Bea F, Montero P, Molina JF (1999) Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith; a model for the generation of Variscan batholiths in Iberia. J Geol 107:399–419

    Article  Google Scholar 

  • Bea F, Montero P, Zinger T (2003) The nature, origin, and thermal influence of the granite source layer of Central Iberia. J Geol 111:579–595

    Article  Google Scholar 

  • Bea F, Montero PG, González-Lodeiro F, Talavera C, Molina JF, Scarrow JH, Whitehouse MJ, Zinger T (2006) Zircon thermometry and U–Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo anatectic complex, central Iberia. J Geol Soc Lond 163:847–855

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace-element signatures and Hf-isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J Petrol 47:329–353

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu–Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bouvier A, Vervoot JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Casillas R, Vialette Y, Peinado M, Duthou JL, Pin C (1991) Âges et caractéristiques isotopiques (Sr, Nd) des granitoïdes de la Sierra de Guadarrama occidentale (Espagne). Abstract Séance Spécialisée Soc Géol France, Mémoire Jean Lameyre.

  • Casquet C, Montero P, Galindo C, Bea F, Lozano R (2004) Geocronología 207Pb/206Pb en cristal único de circón y Rb–Sr del plutón de La Cabrera (Sierra del Guadarrama). Geogaceta 35:71–74

    Google Scholar 

  • Castiñeiras P, Villaseca C, Barbero L, Martín Romera C (2008) SHRIMP U–Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: implications in the Hercynian evolution of central Iberia. Int J Earth Sci 97:35–50

    Article  Google Scholar 

  • Castro A, Patiño Douce AE, Corretgé LG, de la Rosa J, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contrib Mineral Petrol 135:255–276

    Article  Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Article  Google Scholar 

  • Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180:227–236

    Article  Google Scholar 

  • Dias G, Leterrier J, Mendes A, Simoes PP, Bertrand JM (1998) U–Pb zircon and monazite geochronology of syn- to post-tectonic Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45:349–369

    Article  Google Scholar 

  • Dias G, Simoes PP, Ferreira N, Leterrier J (2002) Mantle and crustal sources in the genesis of late-Hercynian granitoids (NW Portugal): geochemical and Sr–Nd isotopic constraints. Gondwana Res 5:287–305

    Article  Google Scholar 

  • Escuder Viruete J, Hernáiz PP, Valverde-Vaquero P, Rodríguez R, Dunning G (1998) Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics 290:87–109

    Article  Google Scholar 

  • Fernández-Suárez J, Dunning GR, Jenner GA, Gutiérrez-Alonso G (2000a) Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronolgy of granitoids. J Geol Soc Lond 157:565–576

    Article  Google Scholar 

  • Fernández-Suárez J, Gutiérrez-Alonso G, Jenner GA, Tubrett MN (2000b) New ideas on the Proterozoic-early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages. Precambrian Res 102:185–206

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibration for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Franco MP (1980) Estudio petrológico de las formaciones metamórficas y plutónicas al norte de la depresión del Corneja-Amblés (Sierra de Ávila). Ph. D. Thesis, Universidad de Salamanca, pp 273

  • Franco MP, García de Figuerola LC (1986) Las rocas básicas y ultrabásicas en el extremo occidental de la Sierra de Ávila. Studia Geol Salmant 23:193–219

    Google Scholar 

  • Franco MP, Sánchez García T (1987) Características petrológicas del área de El Mirón. In: Bea F, Carnicero A, Gonzalo JC, López Plaza M, Rodríguez Alonso MD (eds) Geología de los granitoides y rocas asociadas del Macizo Hespérico. Rueda, Madrid, pp 293–313

    Google Scholar 

  • Fu B, Page FZ, Cavoise AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215

    Article  Google Scholar 

  • Gebauer D, Schmidt R, von Quadt A, Ulmer P (1992) Oligocene, Permian and Panafrican zircon ages from rocks of the Balmuccia Peridotite and of the Lower Layered Group in the Ivrea Zone. Schweiz Miner Petrogr Mitt 72:113–122

    Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlite. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Griffin WL, Belousova E, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf isotope evidence from detrital zircons. Precambrian Res 131:231–282

    Article  Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghoj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158:757–783

    Article  Google Scholar 

  • Hegner E, Kölbl-Ebert M, Loeschke J (1998) Post-collisional Variscan lamprophyres (Black Forest, Germany): 40Ar/39Ar phlogopite dating, Nd, Pb, Sr isotope, and trace element characteristics. Lithos 45:395–411

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon in igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin POW (eds) Zircon. Rev Mineral Geochem 53:27–62

  • Iizuka T, Komiya T, Rino S, Maruyama S, Hirata T (2010) Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim Cosmochim Acta 74:2450–2472

    Article  Google Scholar 

  • Jarosewich EJ, Boatner LA (1991) Rare-earth element reference samples for electron microprobe analysis. Geostand Newsl 15:397–399

    Article  Google Scholar 

  • Liew TC, Finger F, Höck V (1989) The Moldanubian granitoid plutons of Austria: chemical and isotopic studies bearing on their environmental setting. Chem Geol 76:41–55

    Article  Google Scholar 

  • Ludwig KR (2001) SQUID 1.02, a user’s manual. Berkeley Geochronological Center Special Public 2:1–17

    Google Scholar 

  • Ludwig KR (2003) ISOPLOT/Ex, version 3, a geochronological toolkit for microsoft excel. Berkeley Geochronological Center Special Public 4:1–71

    Google Scholar 

  • Martín Parra LM, Martínez Salanova J, Marqués Calvo LA, Contreras E, Iglesias A, Martín Herrero D (1995) Memoria Hoja 602 (Navamorcuende) MAGNA 1:50.000. IGME, Madrid, p 84

    Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcan Geotherm Res 167:282–299

    Article  Google Scholar 

  • Molina JF, Scarrow JH, Montero P, Bea F (2009) High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia. Contrib Mineral Petrol 158:69–98

    Article  Google Scholar 

  • Monjoie P, Bussy F, Schaltegger U, Mulch A, Lapierre H, Pfeifer HR (2007) Contrasting magma types and timing of intrusion in the Permian layered mafic complex of Mont Collon (Western Alps, Valais, Switzerland): evidence from U–Pb zircon and 40Ar/39Ar amphibole dating. Swiss J Geosci 100:125–135

    Article  Google Scholar 

  • Montero P, Bea F, Zinger T (2004) Edad 207Pb/206Pb en cristal único de circón de las rocas máficas y ultramáficas del sector de Gredos, batolito de Ávila (sistema central español). Rev Soc Geol Esp 17:157–167

    Google Scholar 

  • Montero P, Bea F, González-Lodeiro F, Talavera C, Whitehouse MJ (2007) Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geol Mag 144:963–976

    Article  Google Scholar 

  • Moreno-Ventas I, Rogers G, Castro A (1995) The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr–Nd isotopes. Contrib Mineral Petrol 120:137–149

    Article  Google Scholar 

  • Morisset C-E, Scoates S (2008) Origin of zircons rims around ilmenite in mafic plutonic rocks of Proterozoic anorhtosite suites. Can Mineral 46:289–304

    Article  Google Scholar 

  • Naslund HR (1987) Lamellae of baddeleyite and Fe–Cr spinel in ilmenite from the Basistoppen Sill, East Greenland. Can Mineral 25:91–96

    Google Scholar 

  • Neubauer F, Dallmeyer RD, Fritz H (2003) Chronological constraints of late- and post-orogenic emplacement of lamprophyric dykes in the southeastern Bohemian Massif, Austria. Schweiz Miner Petrogr Mitt 83:317–330

    Google Scholar 

  • Orejana D, Villaseca C, Billström K, Paterson BA (2008) Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe. Contrib Mineral Petrol 156:477–500

    Article  Google Scholar 

  • Orejana D, Villaseca C, Pérez-Soba C, López-García JA, Billstrom K (2009) The Variscan gabros from the Spanish Central System: a case for crustal recycling in the subcontinental lithospheric mantle? Lithos 110:262–276

    Article  Google Scholar 

  • Orejana D, Villaseca C, Armstrong RA, Jeffries T (2011) Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: constraints on the tectonothermal evolution of the lower crust under central Spain. Lithos. doi:10.1016/j.lithos.2010.10.011

    Google Scholar 

  • Peltonen P, Mänttäri I, Huhma H, Kontinen A (2003) Archean zircons from the mantle: the Jormua ophiolite revisited. Geology 31:645–648

    Article  Google Scholar 

  • Pereira MD, Ronkin Y, Bea F (1992) Dataciones Rb/Sr en el complejo anatéctico de la Peña Negra (Batolito de Ávila, España central): evidencias de magmatismo pre-hercínico. Rev Soc Geol Esp 5:129–134

    Google Scholar 

  • Peressini G, Quick JE, Sinigoi S, Hofmann AW, Fanning M (2007) Duration of a large mafic intrusion and heat transfer in the lower crust: a SHRIMP U–Pb zircon study in the Ivrea-Verbano Zone (Western Alps). J Petrol 48:1185–1218

    Article  Google Scholar 

  • Peytcheva I, von Quadt A, Georgiev N, Ivanov Zh, Heinrich CA, Frank M (2008) Combining trace-element compositions, U–Pb geochronology and Hf isotopes in zircons to unravel complex calc-alkaline magma chambers in the Upper Cretaceous Srednogorie zone (Bulgaria). Lithos 104:405–427

    Article  Google Scholar 

  • Pilot J, Werner C-D, Haubrich F, Baumann N (1998) Palaeozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature 393:676–679

    Article  Google Scholar 

  • Pin C, Fonseca PE, Paquette JL, Castro P, Matte Ph (2008) The ca. 350 Ma Beja igneous complex: a record of transcurrent slab break-off in the Southern Iberian Variscan Belt? Tectonophysics 461:356–377

    Article  Google Scholar 

  • Pinarelli L, Rottura A (1995) Sr and Nd isotopic study and Rb–Sr geochronology of the Béjar granites, Iberian Massif, Spain. Eur J Mineral 7:577–589

    Google Scholar 

  • Renna MR, Tribuzio R (2009) Petrology, geochemistry and U–Pb zircon geochronology of lower crust pyroxenites from northern Appennine (Italy): insights into the post-collisional Variscan evolution. Contrib Mineral Petrol 157:813–835

    Article  Google Scholar 

  • Renna MR, Tribuzio R, Tiepolo M (2007) Origin and timing of the post-Variscan gabbro-granite complex of Porto (Western Corsica). Contrib Mineral Petrol 154:493–517

    Article  Google Scholar 

  • Roberts MP, Pin C, Clemens JD, Paquette JL (2000) Petrogenesis of mafic to felsic plutonic rock association: the calc-alkaline Quérigut Complex, French Pyrenees. J Petrol 41:809–844

    Article  Google Scholar 

  • Romeo I, Lunar R, Capote R, Quesada C, Dunning GR, Piña R, Ortega L (2006) U–Pb age constraints on Variscan magmatism and Ni-Cu-PGE metallogeny in the Ossa-Morena Zone (SW Iberia) J Geol Soc London 163:837–846

    Google Scholar 

  • Rubatto D, Hermann J (2007) Zircon behaviour in deeply subducted rocks. Elements 3:31–35

    Article  Google Scholar 

  • Rubatto D, Gebauer D, Fanning CM (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: implications for the geodynamic evolution of the central and western Alps. Contrib Mineral Petrol 132:269–287

    Article  Google Scholar 

  • Scarrow J, Molina JF, Bea F, Montero P (2009) Within-plate calc-alkaline rocks: insights from alkaline mafic magma-peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos 110:50–64

    Article  Google Scholar 

  • Scherer EE, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schwartz JJ, John BE, Cheadle MJ, Grimes C, Miranda EA, Wooden JL, Dick HJB (2005) Inherited zircon and the magmatic construction of oceanic crust. Geochim Cosmochim Acta 69(10):A294

    Google Scholar 

  • Solá AR, Williams IS, Neiva AMR, Ribeiro ML (2009) U–Th–Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nisa-Alburquerque batholith, SW Iberian Massif: petrologic and regional implications. Lithos 111:156–167

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts; implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Tera F, Wasseburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  • Turpin L, Velde D, Pinte G (1998) Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb–Sr–Nd isotope constraints on their origin. Earth Planet Sci Lett 87:73–86

    Article  Google Scholar 

  • Ugidos JM, Recio C (1993) Origin of cordierite-bearing granites by assimilation in the Central Iberian Massif (CIM), Spain. Chem Geol 103:27–43

    Article  Google Scholar 

  • Villaseca C, Herreros V (2000) A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. Trans R Soc Edinb Earth Sci 91:207–219

    Google Scholar 

  • Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43:55–79

    Article  Google Scholar 

  • Villaseca C, Downes H, Pin C, Barbero L (1999) Nature and composition of the lower continental crust in central Spain and the granulite-granite linkage: inferences from granulitic xenoliths. J Petrol 40:1465–1496

    Article  Google Scholar 

  • Villaseca C, Orejana D, Pin C, López-García JA, Andonaegui P (2004) Le magmatisme basique hercynien et post-hercynien du Système central espagnol: essai de caractérisation des sources mantelliques. C R Geosci 336:877–888

    Article  Google Scholar 

  • Villaseca C, Orejana D, Paterson BA, Billström K, Pérez-Soba C (2007) Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. Eur J Mineral 19:463–477

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Wetherill GW (1956) Discordant uranium-lead ages. Trans Am Geophys Union 37:320–326

    Google Scholar 

  • Whattam SA, Malpas J, Smith IEM, Ali JR (2006) Link between SSZ ophiolite formation, emplacement and arc inception, Northland, New Zealand: U–Pb SHRIMP constraints; Cenozoic SW Pacific tectonic implications. Earth Planet Sci Lett 250:606–632

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WCP, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determinations. Geostand Geoanal Res 29:183–195

    Article  Google Scholar 

  • Zeck HP, Wingate MTD, Pooley G (2007) Ion microprobe U–Pb zircon geochronology of a late tectonic granitic-gabbroic rock complex within the Hercynian Iberian belt. Geol Mag 144:157–177

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Alfredo Fernández Larios and José González del Tánago for their assistance with the electron microprobe analyses in the CAI of Microscopía Electrónica (Complutense University of Madrid). We are also grateful to Norman Pearson and Rosanna Murphy for their help while performing Hf isotope analyses. We also thank Rosanna Murphy for improving the English. Editorial handling by Johann G. Raith and suggestions made by two anonymous reviewers have greatly increased the quality of the final version of the manuscript. This work is included in the objectives of, and supported by, the CGL2008-05952 project of the Ministerio de Ciencia y Tecnología of Spain and the GR58/08-910492-UCM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Villaseca.

Additional information

Editorial handling: J. Raith

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaseca, C., Orejana, D., Belousova, E. et al. U–Pb isotopic ages and Hf isotope composition of zircons in Variscan gabbros from central Spain: evidence of variable crustal contamination. Miner Petrol 101, 151–167 (2011). https://doi.org/10.1007/s00710-010-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-010-0142-6

Keywords

Navigation