Skip to main content

Advertisement

Log in

Subducting sediment-derived arc granitoids: evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, northwest China

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This paper presents detailed SHRIMP zircon U–Pb chronology, mineral chemistry, major and trace element, and Sr–Nd–Hf isotope geochemistry of the Datong pluton and its quenched enclaves from the western Kunlun orogen, northwest China, in an attempt to achieve a better understanding on the origin of diverse arc magmas. The Datong host granitoids are intermediate to acid in composition (SiO2 = 57.5 ~ 73.1 wt.%), and exhibit high-K calc-alkaline to shoshonitic affinities. The quenched enclaves are silica-rich ultrapotassic rocks. Detailed SHRIMP zircon U–Pb dating indicates that the Datong pluton was emplaced in Ordovician time (473.4–447.7 Ma), which places the Datong pluton in an active continental margin setting, rather than a syn-collision setting of Early Silurian age. The Datong host granitoids were derived by partial melting of subducted sediments, with the subsequent melt interacting with the overlying mantle wedge during its ascent. Partial melting of the veined mantle wedge hybridized by sediment-derived melts generated the silica-rich ultrapotassic magma, which was injected into the Datong granitoid magma chamber and quenched, resulting in enclaves hosted by granitoids. This contribution provides evidence that arc magmas can be derived directly by partial melting of subducted sediments, which is helpful to further understand the origin of diverse arc magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen CM (1991) Local equilibrium of mafic enclaves and granitoids of the Turtle Pluton, Southeast California; mineral, chemical, and isotopic evidence. Am Mineral 76:574–588

    Google Scholar 

  • Baker D (1989) Tracer versus trace element diffusion—diffusional decoupling of Sr concentration from Sr isotope composition. Geochim Cosmochim Acta 53:3015–3023

    Article  Google Scholar 

  • Bali E, Zajacz Z, Kovacs I, Szabo CS, Halter W, Vaselli O, Torok K, Bodnar RJ (2008) A quartz-bearing orthopyroxene-rich websterite xenolith from the Pannonian Basin, Western Hungary: evidence for release of quartz-saturated melts from a subducted slab. J Petrol 49:421–439

    Article  Google Scholar 

  • Barbarin B, Didier J (1991) Enclaves and granite petrology. Elsevier, Amsterdam

    Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Conceiçăo RV, Green DH (2000) Behavior of the cotectic curve En–Ol in the system leucite–olivine–quartz under dry conditions to 2.0 GPa. Geochem Geophys Geosyst 1:1043–1062

    Google Scholar 

  • Dahlquist JA (2002) Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. J S Am Earth Sci 15:643–655

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Didier J (1987) Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. Geol Rundsch 76:41–50

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) Enclaves and granite petrology. Developments in petrology. Elsevier, Amsterdam, p 625

    Google Scholar 

  • Ding DG, Wang DX, Liu WX (1996) The Western Kunlun Orogenic Belt and Basin (in Chinese). Geological Publishing House, Beijing 36:1–224

  • Foley SF (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24:134

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48:237–262

    Article  Google Scholar 

  • Gao JF, Lu JJ, Lai MY, Lin YP, Pu W (2003) Analysis of trace elements in rock samples using HR-ICPMS. J Nanjing Univ (Natural Sci) 39:844–850 (in Chinese with English abstract)

    Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • George R, Turner S, Hawkesworth C, Morris J, Nye C, Ryan J, Zheng SH (2003) Melting processes and fluid and sediment transport rates along the Alaska–Aleutian arc from an integrated U–Th–Ra–Be isotope study. J Geophys Res 108(B5):2252. doi:10.1029/2002JB001916

    Article  Google Scholar 

  • Gerdes A, Wörner G, Finger F (2000) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg pluton, Austria. In: Franke W (ed) Orogenic processes: quantification and modelling in the Variscan Belt, pp 415–431

  • Gibson SA, Thompson RN, Dickin AP, Leonardos OH (1995) High-Ti and low-Ti mafic potassic magmas: key to plume–lithosphere interactions and continental flood–basalt genesis. Earth Planet Sci Lett 136:149–165

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Guo KY (2003) The geological composition and tectonic evolution of the eastern part of Western Kunlun orogeny. PhD thesis, Jilin University, 130p

  • Han FL (2006) Tectonic evolution and mineralization of the western Kunlun accretion-type orogen. PhD thesis China University of Geosciences (Wuhan), 232p

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, Van Calsteren P (1997) U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276:551–555

    Article  Google Scholar 

  • Holden P, Halliday AN, Stephens WE, Henney PJ (1991) Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma. Chem Geol 92:135–152

    Article  Google Scholar 

  • Ji WH, Zhou H, Li RS, Chen SJ, Zhao ZM (2007) The age of Palaeozoic–Mesozoic tectonic events along North Xin–Zang Road in West Kunlun. J China Univ Geos 32:671–680 (in Chinese with English abstract)

    Google Scholar 

  • Jiang CF, Yang JS, Feng BG, Zhu Z (1992) Opening and closing tectonics of the Kunlun Mountains (in Chinese). Geological Publishing House, Beijing

    Google Scholar 

  • Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ, Yang WZ (2002) Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos 63:165–187

    Article  Google Scholar 

  • Jiang YH, Ling HF, Jiang SY, Fan HH, Shen WZ, Ni P (2005) Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China. J Petrol 46:1121–1154

    Article  Google Scholar 

  • Jiang YH, Liao SY, Yang WZ, Shen WZ (2008) An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China: SHRIMP zircon U–Pb chronology, elemental and Sr–Nd–Hf isotopic geochemistry and Paleozoic tectonic implications. Lithos 106:323–335

    Article  Google Scholar 

  • Jiang YH, Jin GD, Liao SY, Zhou Q, Zhao P (2010) Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent-continent collision. Lithos 117:183–197

    Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1:1007–1033

    Article  Google Scholar 

  • Johnston AD, Wyllie PJ (1988) Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contrib Mineral Petrol 98:352–362

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Keto LS, Jacobsen SB (1987) Nd and Sr isotopic variations of Early Paleozoic oceans. Earth Planet Sci Lett 84:27–41

    Article  Google Scholar 

  • Kilian R, Stern CR (2002) Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths. Eur J Mineral 14:25–36

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG (1997) Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Am Mineral 82:1019–1037

    Google Scholar 

  • Lesher CE (1994) Kinetics of Sr and Nd exchange in silicate liquids: theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J Geophys Res 99:9585–9604

    Article  Google Scholar 

  • Ludwig KR (2001a) SQUID 1.02, a user’s Manual. Berkeley Geochronological Center Special Publication, Berkeley, p 219

    Google Scholar 

  • Ludwig KR (2001b) Using Isoplot/Ex, Version 2.49: a geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley, p 55

    Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac JP, Vidal P, Qing L, Yusheng P, Yi W (1996) Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet Sci Lett 142:311–330

    Article  Google Scholar 

  • Mattern F, Schneider W (2000) Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China). J Asian Earth Sci 18:637–650

    Article  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • Meen JK (1987) Formation of shoshonites from calc-alkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Mineral Petrol 97:333–351

    Article  Google Scholar 

  • Meen JK (1990) Elevation of potassium content of basaltic magma by fractional crystallization: the effect of pressure. Contrib Mineral Petrol 104:309–331

    Article  Google Scholar 

  • Miller C, Schuster R, Klötzli U, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Nardi LVS, Plá Cid J, Bitencourt MF (2007) Minette mafic microgranular enclaves and their relationship to host syenites in systems formed at mantle pressures: major and trace element evidence from the Piquiri Syenite Massif, southernmost Brazil. Mineral Petrol 91:101–116

    Article  Google Scholar 

  • Nichols GT, Wyllie PJ, Stern CR (1994) Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371:785–788

    Article  Google Scholar 

  • Pan YS (2000) Geological evolution of the Karakorum–Kunlun Mountains (in Chinese). Science, Beijing, pp 324–392

    Google Scholar 

  • Pan GS, Wang LQ, Li XZ, Wang JM, Xu Q (2001) The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai–Xizang Plateau. Sed Geol Teth Geol 21:1–26 (in Chinese with English abstract)

    Google Scholar 

  • Peccerillo A (1999) Multiple mantle metasomatism in central-southern Italy; geochemical effects, timing and geodynamic implications. Geology 27:315–318

    Article  Google Scholar 

  • Peterson TD, Esperança S, LeCheminant AN (1994) Geochemistry and origin of the Proterozoic ultrapotassic rocks of the Churchill Province, Canada. Mineral Petrol 51:251–276

    Article  Google Scholar 

  • Plá Cid J, Rios DC, Conceiçăo H (2006) Petrogenesis of mica-amphibole-bearing lamprophyres associated with the Paleoproterozoic Morro do Afonso syenite intrusion, eastern Brazil. J South Am Earth Sci 22:98–115

    Article  Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 363:739–742

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Pu W, Zhao K, Ling H, Jiang S (2004) High precision Nd isotope measurement by means of Triton TI mass spectrometry. Acta Geol Sin 271–274 (in Chinese with English abstract)

  • Pu W, Gao JF, Zhao KD, Ling H, Jiang S (2005) Separation method of Rb–Sr, Sm–Nd using DCTA and HIBA. J Nanjing Univ (Natural Sci) 41:445–450 (in Chinese with English abstract)

    Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW (1998) Nomenclature of the micas. Can Mineral 36:905–912

    Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Google Scholar 

  • Rios DC, Conceiçăo H, Davis DW, Plá Cid J, Rosa MLS, Macambira MJB, McReath I, Marinho MM, Davis WJ (2007) Paleoproterozoic potassic–ultrapotassic magmatism: Morro do Afonso Syenite Pluton, Bahia, Brazil. Precambrian Res 154:1–30

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al–in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn BM (1998) Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth Planet Sci Lett 160:479–492

    Article  Google Scholar 

  • Song B, Zhang YH, Wan YS (2002) Mounting and analytical procedure of zircon SHRIMP dating. Geol Rev 48:26–30 (in Chinese with English abstract)

    Google Scholar 

  • Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417 418. Earth Planet Sci Lett 130:169–185

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40:1012–1054

    Article  Google Scholar 

  • Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrb Mineral Abh 136:169–206

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ London 42:313–345

    Article  Google Scholar 

  • Tatsumi Y (2001) Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology 29:323–326

    Article  Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell, Cambridge

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  • Tindle AG (1991) Trace element behaviour in microgranular enclaves from granitic rocks. In: Didier J, Barbarin B (eds) Enclaves and granite Petrology. Developments in Petrology, Elsevier, Amsterdam, pp 313–331

    Google Scholar 

  • Tollstrup DL, Gill JB (2005) Hafnium systematics of the Mariana arc: evidence for sediment melt and residual phases. Geology 33:737–740

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U–230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61:4855–4884

    Article  Google Scholar 

  • Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in Petrology, Elsevier, Amsterdam, pp 277–291

    Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2001) Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia. Lithos 56:165–186

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF, Bai ZH (2006) Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos 89:424–446

    Article  Google Scholar 

  • West DP Jr, Tomascak PB, Coish RA, Yates MG, Reilly MJ (2007) Petrogenesis of the ultrapotassic Lincoln Syenite, Maine: Late Silurian–Early Devonian melting of a source region modified by subduction driven metasomatism. Am J Sci 307:265–310

    Article  Google Scholar 

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Mineral 50:1228–1273

    Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol 79:375–380

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Liu DY, Jian P, Liu CZ, Yuan C, Sun M (2005a) Accretionary tectonics of the Western Kunlun Orogen, China: a Paleozoic–Early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia. J Geol 113:687–705

    Article  Google Scholar 

  • Xiao XC, Jun W, Li SU, Ji WH, Song SG (2005b) An early aged ophiolite in the western Kunlun Mts., NW Tibetan Plateau and its tectonic implications. Acta Geol Sin 79:778–786

    Google Scholar 

  • Xu RH, Zhang YQ, Xie YW, Chen FK, Vidal P, Arnaud N, Zhang QD, Zhao DM (1994) A discovery of an early Palaeozoic tectono-magmatic belt in the Northern part of west Kunlun Shan (in Chinese). Sci Geol Sin 29:313–328

    Google Scholar 

  • Ye HM, Li XH, Li ZX, Zhang CL (2008) Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Res 13:126–138

    Article  Google Scholar 

  • Yuan C, Sun M, Zhou M, Zhou H, Xiao W, Li J (2002) Tectonic evolution of the West Kunlun: geochronologic and geochemical constraints from Kudi granitoids. Int Geol Rev 44:653–669

    Article  Google Scholar 

  • Zhang CL, Zhao Y, Guo KY (2003) Geochemistry characteristics of the Proterozoic meta-basalt in southern Tarim plate: evidence for the Meso-Proterozoic breakup of Paleo–Tarim plate. Earth Sci 28:47–53 (in Chinese with English abstract)

    Google Scholar 

  • Zhang CL, Ye HM, Wang AG, Guo KY, Dong YG (2004a) Geochemistry of the Neoproterozoic diabase and basalt in south of Tarim plate: evidence for the Neo-proterozoic breakup of the Rodinia supercontinent in south Tarim. Acta Petrol Sin 20:473–482 (in Chinese with English abstract)

    Google Scholar 

  • Zhang CL, Yu HF, Shen JL, Dong YG, Ye HM, Guo KY (2004b) Zircon SHRIMP age determination of the giant-crystal gabbro and basalt in Kuda, West Kunlun: dismembering of the Kuda ophiolite. Geol Rev 50:639–643 (in Chinese with English abstract)

    Google Scholar 

  • Zhang CL, Li ZX, Li XH, Ye HM, Wang AG, Guo KY (2006) Neoproterozoic bimodal intrusive complex in the southwestern Tarim block, NW China: age, geochemistry and implications for the rifting of Rodinia. Int Geol Rev 18:112–128

    Article  Google Scholar 

  • Zhang CL, Lu SN, Yu HF, Ye HM (2007a) Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai–Tibet Plateau: evidence from zircon SHRIMP and LA–ICP–MS U–Pb geochronology. Sci China (D-Series) 50:825–835

    Article  Google Scholar 

  • Zhang ZW, Cui JT, Wang JC, Bian XW, Zhu HP, Luo QZ, Wang MC (2007b) Zircon SHRIMP U–Pb dating of Early Paleozoic amphibolite and granodiorite in Korliang, northwestern Kangxiwar, West Kunlun. Geol Bull Chin 26:720–725 (in Chinese with English abstract)

    Google Scholar 

  • Zheng QR (1983) Calculation of the Fe3+ and Fe2+ contents in silicate and Ti–Fe oxide minerals from epma data. Acta Petrol Sin 3:55–62 (in Chinese)

    Google Scholar 

  • Zhou H (1998) The main ductile shear zone and the lithosphere effective elastic thickness of the W Kunlun orogenic belt. PhD thesis, Institute of Geology and Geophysics, Chinese Academy of Sciences 103p

  • Zhou H, Li JL (2000) Age and geochemical features of lamprophyres in Kuda, western Kunlun. Acta Petrol Sin 16:380–384

    Google Scholar 

  • Zhou H, Chu ZY, Li JL, Hou QL, Wang ZH, Fang AM (2000) 40Ar/39Ar dating of ductile shear zone in Kuda, west Kunlun, Xinjiang. Sci Geol Sin 35:233–239 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr L.C. Miao for his assistance with SHRIMP U–Pb analyses, and to Dr H. Zhou for his providing detailed data of the Kuda paragneiss. We thank Andreas Moeller (Associate Editor) and three anonymous reviewers for their thoughtful reviews and constructive comments. The Editor, J.G. Raith, is also thanked for his helpful editorial handling of the manuscript and good suggestions for improvement. This work was financially supported by National Natural Science Foundation of China (40572037; 40972040) and the Key Project of Ministry of Education, China (No. 306007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Hui Jiang.

Additional information

Editorial handling: J. Raith

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A. (XLS 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, SY., Jiang, YH., Jiang, SY. et al. Subducting sediment-derived arc granitoids: evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, northwest China. Miner Petrol 100, 55–74 (2010). https://doi.org/10.1007/s00710-010-0122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-010-0122-x

Keywords

Navigation