Abstract
The Adamello gabbro exposed on the summit of Cornone di Blumone, Western Alps, Italy, has been fused by lightning strikes to form magnetite-rich fulgurites produced by melting of magnetite, hornblende, calcic plagioclase and minor clinopyroxene. The composition of quench magnetite in the fulgurite is 44.4 Fe3O4; 27.5 MgFe2O4; 15.1 FeAl2O4; 7.9 Fe2TiO4; 2.5 Fe2SiO4; 1.9 CaFe2O4; 0.8 MnFe2O4 and is inferred to have crystallized from a low-Si, Fe-rich melt under high oxidation conditions of about 1 log unit below the log10ƒO2 of hematite–magnetite. The low Si, Fe-rich melt is considered to have been produced from fusion of magnetite + hornblende-rich areas of the host gabbro and/or possible separation of an immiscible high Fe2O3/FeO Fe-rich, low-Si melt from a more siliceous glass during superheating. Skeletal-dendritic morphologies of magnetite in the fulgurite indicate crystallization under conditions of extreme supercooling. Juxtaposition of areas exhibiting different growth habits and crystal sizes of magnetite may reflect compositionally different local melt domains and/or small differences in the delicate balance between nucleation and growth in domains that had slightly different, although ultrafast, cooling rates.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ablesimov NYe, Tsyurupa AI, Lipatov VG (1986) Phase and element ratios upon fulguritization of basalt. Trans (Dokl) USSR Acad Sci Earth Sci Sect 290:161–164
Bohor BF, Foord EE, Ganapathy R (1986) Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain. Earth Planet Sci Lett 81:57–66
Borucki WJ, Chameides WL (1984) Lightning: estimates of the rates of energy dissipation and nitrogen fixation. Rev Geophys Space Phys 22:363–372
Bowen NL (1913) The melting behavior of plagioclase feldspars. Am J Sci 35:577–599
Cardona MR, Castro KF, Garcia PPC, Hernandez LEO (2006) Mineralogical study of binary iron silicides (Fe–Si system) in a fulgurite from Hidalgo, Mexico. Bol Minerol 17:69–76
Clocchiatii R (1990) Les fugurites et roches vitrifiées de l’Etna. Eur J Mineral 2:479–494
Essene EJ, Fischer DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193
Frenzel G, Ottemann J (1978) Über Blitzgläser vom Katzenbuckel, Odenwald, und ihre Ähnlichkeit mit Tektiten. Neues Jahrbuch Mineral Monatsh 10:439–446
Frenzel G, Stähle V (1982) Fulgurite glass on peridotite from near Frankenstein near Darmstadt. Chem Erde 41:111–119
Frenzel G, Stähle V (1984) Über Aluminosilikatglas mit Lechatelierit-Einschlüssen von einer Fulguritröhre des Hahnenstockes (Glarner Freiburg, Schweiz). Chem Erde 43:17–26
Frenzel G, Irouschek-Zumthor A, Stähle V (1989) Stoβwellenmetamorphose, Aufschmelzung and Verdampfung bei Fulguritbildung an exponierten Berggipfeln. Chem Erde 49:265–286
Garcia-Guinea J, Furio M, Fernandez-Hernan M, Bustillo MA, Crespo-Feo E, Correcher V, Sanchez-Muñoz L, Matesanz E (2009) The quartzofeldspathic fulgurite of Bustaviejo (Madrid): glassy matrix and silicon phases. Micro-Raman Spectroscopy and Luminescence Studies 3011. pdf
Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212
Hill R, Roeder P (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J Geol 82:709–729
Jak E, Degterov S, Hayes PC, Pelton AD (1998) Thermodynamic modeling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirement from coal ash slags. Fuel 77:77–84
Kutchko BG, Kim AGK (2006) Fly ash characterization by SEM-EDS. Fuel 85:2537–2544
Kyte FT, Bostwick JA (1995) Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: remnants of hot, early ejecta from the Chicxulub impact? Earth Planet Sci Lett 132:113–127
Lysiuk AY, Lysiuk GN (2005) Spectroscopy of the fulgurite glasses. Geophys Res Abs 7:00682
Muan A (1956) Phase equilibria at liquidus temperatures in the system iron oxide-Al2O3-SiO2 in air atmosphere. Am Ceram Soc J 40:121–133
Muan A, Osborn EF (1956) Phase equilibria at liquidus temperatures in the system MgO-FeO-Fe2O3-SiO2. Am Ceram Soc J 39:121–140
Parnell J, Thackery S, Muirhead D, Wright A (2008) Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. Lunar Planet Sci XXXIX:1286
Pouchou J-L, Pichior F (1991) Quantitative analyses of homogeneous or stratified microvolumes applying the model of “PAP”. In: Heinrich KFJ, Newberry DE (eds) Electron probe quantitation. Plenum, New York, pp 31–75
Rietmeijer FJM (1996) The ultrafine mineralogy of a molten interplanetary dust particle as an example of the quench regime of atmosphere entry heating. Meteorit Planet Sci 31:237–242
Robin E, Bonté Ph, Froget L, Jéhanno C, Rocchia R (1992) Formation of spinels in cosmic objects during atmospheric entry: a clue to the Cretaceous-Tertiary boundary event. Earth Planet Sci Lett 108:181–190
Sheffer AA, Dyar MD, Sklute EC (2006) Lightning strike glasses as an analog for impact glasses: 57Mossbauer spectroscopy of fulgurites. Lunar Planet Sci XXXVII: 2009.pdf
Sokol EV, Kalugin VM, Nigmatulina EN, Volkova NI, Frenkel AE, Maksimova NV (2002) Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions. Fuel 81:867–876
Sulovský P (2002) Mineralogy and chemistry of conventional and fluidized bed coal ashes. BullCzech Geol Sur 77:1–11
Switzer G, Melson WG (1968) Origin and composition of rock fulgurite glass. Smithsonian Contrib Earth Sci 9:47–51
Uman MA (1969) Lightning. Advanced physics. Monograph. McGraw-Hill, New York
Uman MA, Beasley WH, Tiller JA, Lin Y-T, Krider EPh, Weidmann ChD, Krehbiel PR, Brook M, Few AA Jr, Bohannon JI, Lennon CL, Poehler HA, Jafferis W, Gulick JR, Nicholson JR (1978) An unusual lightning flash at Kennedy Space Centre. Science 201:9–16
Wasserman H, Melosh J, Lauretta DS (2002) Fulgurites: a look at transient high temperature processes in silicates. Lunar Planet Sci XXXIII: 1308.pdf
Wimmenauer W (2006) Vorkommen und Strukturen von Fulguriten im Schwarzwald. Aufschluss 57:325–328
Yu Y, Hewins RH (1998) Transient heating and chondrule formation: evidence from sodium loss in flash heating simulation experiments. Geochim Cosmochim Acta 62:159–172
Zhao Y, Zhang J, Sun J, Bai X, Zheng C (2006) Mineralogy, chemical composition, and microstructures of ferrospheres in fly ashes from coal combustion. Energy Fuel 20:1490–1497
Acknowledgements
We would like to thank Institut für Geowissenschaften (Albert-Ludwigs-Universität Freiburg) personnel: Daniel Weidenmann for collecting fused gabbro from the summit of Cornone di Blumone; Isolde Schmidt for XRF analyses; and Sigrid Hirth-Walther for FeO, H2O+ and CO2 determination. The paper was considerably improved by the constructive comments and suggestions by two anonymous reviewers to whom we are grateful. One reviewer is thanked for kindly providing a comprehensive reference list of publications on fulgurites.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial handling: J.G. Raith
Rights and permissions
About this article
Cite this article
Grapes, R.H., Müller-Sigmund, H. Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Miner Petrol 99, 67–74 (2010). https://doi.org/10.1007/s00710-009-0100-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00710-009-0100-3