Skip to main content

Textural, chemical, and isotopic effects of late-magmatic carbonatitic fluids in the carbonatite–syenite Tamazeght complex, High Atlas Mountains, Morocco

Abstract

Carbonatites of the Eocene Tamazeght complex, High Atlas Mountains, Morocco, consist of calciocarbonatites (alvikite and sövite dykes) and magnesiocarbonatites (diatreme breccias and dykes rocks). These are associated with ultramafic, shonkinitic, gabbroic to monzonitic and various foid syenitic silicate units. Stable and radiogenic isotope compositions for carbonatites and silicate rocks indicate that they share a common source in the mantle, although for some carbonatitic samples contamination with sedimentary rocks seems important. The observed isotopic heterogeneity is mainly attributed to source characteristics, fractional crystallization (accompanied by various degrees of assimilation), and late- to post-magmatic fluid–rock interaction. During the late fluid–rock interaction, Sr, Mn, and possibly also Fe were mobilized and redistributed to form secondary carbonate minerals in carbonatites. These fluids also penetrated into the adjacent syenitic rocks, causing enrichment in the same elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Anovitz LM, Essene EJ (1987) Phase equilibria in the system CaCO3–MgCO3–FeCO3. J Petrol 28:389–414

    Google Scholar 

  2. Barker DS (1989) Field relations of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 38–69

    Google Scholar 

  3. Bell K (1998) Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks—a brief review. J Petrol 39:1987–1996

    Article  Google Scholar 

  4. Bell K, Kjarsgaard BA, Simonetti A (1998) Carbonatites-into the twenty-first century. J Petrol 39:1839–1845

    Article  Google Scholar 

  5. Bernard-Griffiths J, Fourcade S, Dupuy C (1991) Isotopic study (Sr, Nd, O and C) of lamprophyres and associated dykes from Tamazart (Morocco); crustal contamination processes and source characteristics. Earth Planet Sci Lett 103:190–199

    Article  Google Scholar 

  6. Böttcher ME (1996) 18O/16O and 13C/12C fractionation during the reaction of carbonates with phosphoric acid: effects of cationic substitution and reaction temperature. Isot Environ Health Stud 32:299–305

    Article  Google Scholar 

  7. Bouabdli A, Liotard J-M (1999) Rôle des fluide carbonatés dans le contrôle de la composition des clinopyroxènes ferrisodiques: example du massif carbonatique de Tamazert (Haut-Atlas de Midelt, Maroc). Africa Geoscience Review 6:291–300

    Google Scholar 

  8. Bouabdli A, Dupuy C, Dostal J (1988) Geochemistry of Mesozoic alkaline lamprophyres and related rocks from the Tamazert massif, High Atlas, (Morocco). Lithos 22:43–58

    Article  Google Scholar 

  9. Coulson IM, Goodenough KM, Pearce NJG, Leng MJ (2003) Carbonatites and lamprophyres of the Gardar Province—a‚ window’ to the sub-Gardar mantle? Mineral Mag 67:855–872

    Article  Google Scholar 

  10. Das Sharma S, Patil DJ, Gopalan K (2002) Temperature dependence of oxygen isotope fractionation of CO2 from magnesite–phosphoric acid reaction. Geochim Cosmochim Acta 66:589–593

    Article  Google Scholar 

  11. Dawson JB, Steele IM, Smith JV, Rivers ML (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineral Mag 60:415–425

    Article  Google Scholar 

  12. Deines P (1970) The carbon and oxygen isotopic composition of carbonates from the Oka carbonatite complex, Quebec, Candada. Geochim Cosmochim Acta 34:1199–1225

    Article  Google Scholar 

  13. Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 301–359

    Google Scholar 

  14. Deines P (2004) Carbon isotope effects in carbonate systems. Geochim Cosmochim Acta 68:2659–2679

    Article  Google Scholar 

  15. Demény A, Ahijado A, Casillas R, Vennemann TW (1998) Crustal contamination and fluid/rock interaction processes in the carbonatites of Fuerteventura (Canary Islands, Spain) a C, O, H isotope study. Lithos 44:101–115

    Article  Google Scholar 

  16. Eiler JM (2001) Oxygen isotope variations of Basaltic Lavas and Upper Mantle Rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  17. Farver JR (1989) Oxygen self diffusion in diopside with application to cooling rate determinations. Earth Planet Sci Lett 92:386–396

    Article  Google Scholar 

  18. Farver JR, Giletti BJ (1985) Oxygen diffusion in amphiboles. Geochim Cosmochim Acta 49:1403–1411

    Article  Google Scholar 

  19. Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites—an experimental study. Contrib Mineral Petrol 73:105–117

    Article  Google Scholar 

  20. Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry. US Geological Survey, Professional Papers—Fleischer M (ed) (1977) 440-KK:12

  21. Gittins J (1979) Problems inherent in the application of calcite–dolomite geothermometry to carbonatites. Contrib Mineral Petrol 69:1–4

    Article  Google Scholar 

  22. Gittins J, Beckett MF, Jago BC (1990) Composition of the fluid phase accompanying carbonatite magma: a critical examination. Am Mineral 75:1106–1109

    Google Scholar 

  23. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of the atmospheric dust and particulates from major river systems. Earth Planet Sci Lett 70:221–236

    Article  Google Scholar 

  24. Golyshev SI, Padalko NL, Pechenkin SA (1981) Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geochem Intl 18:85–99

    Google Scholar 

  25. Halama R, Vennemann TW, Siebel W, Markl G (2005) The Grønnedal-Ika Carbonatite–Syenite complex, south Greenland: Carbonatite formation by Liquid Immiscibility. J Petrol 46:191–217

    Article  Google Scholar 

  26. Harmer RE (1999) The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop complex, South Africa. J Petrol 40:525–548

    Article  Google Scholar 

  27. Harmer RE, Gittins J (1998) The case for primary, mantle derived carbonatite magma. J Petrol 39:1895–1903

    Article  Google Scholar 

  28. Harris C (1995) Oxygen isotope geochemistry of the Mesozoic anorogenic complexes of Damaraland, northwest Namibia: evidence for crustal contamination and its effects on silica saturation. Contrib Mineral Petrol 122:308–321

    Article  Google Scholar 

  29. Hoefs J (2001) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  30. Horstmann UE, Verwoerd WJ (1997) Carbon and oxygen variations in southern African carbonatites. J Afr Earth Sci 25:115–136

    Article  Google Scholar 

  31. Jacobson SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  32. Kchit A (1990) Le plutonisme alcalin du Tamazert, Haut Atlas de Midelt (Maroc), Petrologie et Structurologie. Unpublished thesis, Univ. Paul Sabatier, Toulouse

  33. Khadem-Alla B, Fontan F, Kadar M, Monchoux P, Sørensen H (1998) Reactions between agpaitic neheline syenitic melts and sedimentary carbonate rocks, exemplified by the Tamazeght complex, Morocco. Geochem Int 36:569–581

    Google Scholar 

  34. Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer, Berlin, pp 113–123

    Google Scholar 

  35. Keppler H (2003) Water solubility in carbonatite melts. Am Mineral 88:1822–1824

    Google Scholar 

  36. Kjarsgaard BA (1998) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39:2061–2075

    Article  Google Scholar 

  37. Kyser TK (1986) Stable isotope variations in the mantle. Rev Mineral 16:141–162

    Google Scholar 

  38. Laville E, Harmand C (1982) Evolutionion magmatique et tectonique du basin intracontinental mésozoique du Haut-Atlas (Maroc): un modèle de mise en place synsédimentaire de massifs “anorogeniques” liés à des dérochements. Bulletin de la Sciété Géologique de France 7:221–227

    Google Scholar 

  39. Le Bas MJ (1989) Diversification of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 428–447

    Google Scholar 

  40. Lee W-J, Wyllie PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites. Int Geol Rev 36:797–819

    Article  Google Scholar 

  41. Lee W-J, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO-(MgO+FeO*)-(Na2O+K2O)-(SiO2+Al2O3+TiO2)-CO2. J Petrol 39:495–517

    Article  Google Scholar 

  42. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Article  Google Scholar 

  43. Malone MJ, Baker PA, Burns SJ (1996) Recrystallization of dolomite: an experimental study from 50–200°C. Geochim Cosmochim Acta 60:2189–2207

    Article  Google Scholar 

  44. Marks M, Vennemann TW, Siebel W, Markl G (2003) Quantification of magmatic and hydrothermal processes in a peralkaline syenite–alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. J Petrol 44:1247–1280

    Article  Google Scholar 

  45. Marks MAW, Coulson IM, Schilling J, Jacob D, Schmitt AK, Markl G (2008a) The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem Geol 257:153–172

    Article  Google Scholar 

  46. Marks MAW, Schilling J, Coulson IM, Wenzel T, Markl G (2008b) The alkaline–peralkaline Tamazeght complex, High Atlas Mountains, Morocco: mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. J Petrol 49:1097–1131

    Article  Google Scholar 

  47. Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068

    Article  Google Scholar 

  48. Moore KR, Wood BJ (1998) The transition from carbonate to silicate melts in the CaO–MgOSiO2–CO2 system. J Petrol 39:1943–1951

    Article  Google Scholar 

  49. Mourtada S, Le Bas MJ, Pin C (1997) Pétrogenèse des magnésio-carbonatites du complexe de Tamazert (Haut Atlas marocain). Compt Rend Ac Sci Paris 325:559–564

    Google Scholar 

  50. Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17

    Article  Google Scholar 

  51. Ngwenya BT (1994) Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi; processes at the fluid/rock interface. Geochim Cosmochim Acta 58:2061–1072

    Article  Google Scholar 

  52. Pineau F, Javoy M, Allegre CJ (1973) Etude systématique des isotopes de l’oxygen, du carbone et du strontium dans les carbonatites. Geochim Cosmochim Acta 37:2363–2377

    Article  Google Scholar 

  53. Platt RG, Woolley AR (1990) The carbonatites and fenites of Chipman Lake, Ontario. Can Mineral 28:241–250

    Google Scholar 

  54. Ray JS, Ramesh R (2000) Rayleigh fractionation of stable isotopes from a multicomponent source. Geochim Cosmochim Acta 64:299–306

    Article  Google Scholar 

  55. Roddick JC, Sullivan RW, Dudas FÖ (1992) Precise calibration of Nd tracer isotopic composition for Sm–Nd studies. Chem Geol 97:1–8

    Article  Google Scholar 

  56. Rosenbaum J, Sheppard SMF (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150

    Article  Google Scholar 

  57. Rumble D, Hoering TC (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphrere. Acc Chem Res 27:237–241

    Article  Google Scholar 

  58. Salvi S, Fontan F, Monchoux P (2000) Hydrothermal mobilization of High field Strength elements in alkaline igneous systems: evidence from the Tamazeght Complex, (Morocco). Econ Geol 95:559–576

    Article  Google Scholar 

  59. Santos RV, Clayton RN (1995) Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochim Cosmochim Acta 59:1339–1352

    Article  Google Scholar 

  60. Sharp ZD (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  61. Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determining the hydrogen and oxygen isotope ratios from water and solid hydrous substances. Chem Geol 178:197–210

    Article  Google Scholar 

  62. Schilling J, Marks MAW, Wenzel T, Markl G (2009) Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: a case study from Tamazeght, Morocco. Can Mineral 40:351–365

    Article  Google Scholar 

  63. Spötl C, Vennemann TW (2003) Continuous-flow IRMS analysis of carbonate minerals. Rapid Commun Mass Spectrom 17:1004–1006

    Article  Google Scholar 

  64. Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240

    Article  Google Scholar 

  65. Sweeney RJ, Prozesky V, Przybylowicz W (1994) Trace element partitioning between silicate minerals and carbonatite and silicate melts at 18 kb to 46 kb pressure. Mineral Mag 58:885–886

    Article  Google Scholar 

  66. Taylor HPJ, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. Rev Miner 16:227–269

    Google Scholar 

  67. Thompson RN, Smith PM, Gibson SA, Mattey DP, Dickin AP (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contrib Mineral Petrol 143:37–359

    Google Scholar 

  68. Tichomirowa M, Grosche G, Götze J, Belyatsky BV, Savva EV, Keller J, Todt W (2006) The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province—alteration versus primary magmatic signatures. Lithos 91:229–249

    Article  Google Scholar 

  69. Tisserant D, Thuizat R, Agard J (1976) Données géochronologiques sur le complexe de roches alcalines du Tamazeght (Haut Atlas de Midelt, Maroc). Bureau des Recherches Géologiques et Minière Bulletin 2:279–283

    Google Scholar 

  70. Treiman AH, Essene EJ (1984) A periclase–dolomite–calcite carbonatite from the Oka complex, Quebec, and ist calculated volatile composition. Contrib Mineral Petrol 85:149–157

    Article  Google Scholar 

  71. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen iotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  72. Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experiments study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  73. Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineral Mag 46:13–17

    Article  Google Scholar 

  74. Zheng Y-F (1993a) Calculation of oxygen isotope fractionation in anydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

  75. Zheng Y-F (1993b) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Article  Google Scholar 

  76. Zheng Y-F (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Google Scholar 

  77. Zaitsev AN, Wall F, Le Bas MJ (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola peninsula, Russia: their mineralogy, paragenesis and evolution. Mineral Mag 62:225–250

    Article  Google Scholar 

Download references

Acknowledgements

Julian Schilling was of invaluable help during fieldwork and shared his ideas during numerous discussions. Ali Bajja (University of Marrakesh) is acknowledged for his cooperation that facilitated our fieldwork and Boudaoud Boujemaa supplied the infrastructure in the field. Thomas Wenzel is thanked for his help during microprobe measurements, Bernd Steinhilber for oxygen and carbon isotope analysis of carbonatite samples, Annabel Händel for the careful and time-consuming hand picking of the large number of mineral separates used in this study and Zsófia Wáczek (Lausanne) for analyzing them. Thomas Wenzel, Heiner Taubald, Wolfgang Siebel and Ralf Halama and four anonymous reviewers gave valuable comments at an earlier stage of this work. This research was supported by the Alfried Krupp Prize for Young University Teachers of the Krupp Foundation and by the Deutsche Forschungsgemeinschaft (grant Ma 2135/11-1 and 11-2), which is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael A. W. Marks.

Additional information

Editorial handling: L.G. Gwalani

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marks, M.A.W., Neukirchen, F., Vennemann, T. et al. Textural, chemical, and isotopic effects of late-magmatic carbonatitic fluids in the carbonatite–syenite Tamazeght complex, High Atlas Mountains, Morocco. Miner Petrol 97, 23 (2009). https://doi.org/10.1007/s00710-009-0075-0

Download citation

Keywords

  • Calcite
  • Dolomite
  • Barite
  • Mantle Source
  • Nepheline