Advertisement

Mineralogy and Petrology

, Volume 96, Issue 3–4, pp 221–232 | Cite as

Friedrichbeckeite, K (□0.5Na0.5)2 (Mg0.8Mn0.1Fe0.1)2 (Be0.6 Mg0.4)3 [Si12O30], a new milarite-type mineral from the Bellerberg volcano, Eifel area, Germany

  • C. L. Lengauer
  • N. Hrauda
  • U. Kolitsch
  • R. Krickl
  • E. Tillmanns
Original Paper

Abstract

Friedrichbeckeite is a new milarite-type mineral. It was found in a single silicate-rich xenolith from a quarry at the Bellerberg volcano near Ettringen, eastern Eifel volcanic area, Germany. It forms thin tabular crystals flattened on {0001}, with a maximum diameter of 0.6 mm and a maximum thickness of 0.1 mm. It is associated with quartz, tridymite, augite, sanidine, magnesiohornblende, enstatite, pyrope, fluorapatite, hematite, braunite and roedderite. Friedrichbeckeite is light yellow, with white to light cream streak and vitreous lustre. It is brittle with irregular fracture and no cleavage, Mohs hardness of 6, calculated density is 2.686 gcm−3. Optically, it is uniaxial positive with nω = 1.552(2) and nε = 1.561(2) at 589.3 nm and a distinct pleochroism from yellow (//ω) to light blue (//ε). Electron microprobe analyses yielded (wt.%): Na2O 2.73, K2O 4.16, BeO 4.67, MgO 11.24, MnO 2.05, FeO 1.76, Al2O3 0.15, SiO2 73.51, (Σ CaO, TiO2 = 0.06) sum 100.33 (BeO determined by LA-ICP-MS). The empirical formula based on Si = 12 is K0.87 Na0.86 (Mg1.57Mn0.28Fe0.24)Σ2.09 (Be1.83 Mg1.17)Σ3.00 [Si12O30], and the simplified formula can be given as K (□0.5Na0.5)2 (Mg0.8Mn0.1Fe0.1)2 (Be0.6 Mg0.4)3 [Si12O30]. Friedrichbeckeite is hexagonal, space-group P6/mcc, with a = 9.970(1), c = 14.130(3) Å, V = 1216.4(3) Å3, and Z = 2. The strongest lines in the X-ray powder diffraction pattern are (d in Å / I obs / hkl): 3.180 / 100 / 121, 2.885 / 70 / 114, 4.993 / 30 / 110, 4.081 / 30 / 112, 3.690 / 30 / 022. A single-crystal structure refinement (R1 = 3.62 %) confirmed that the structure is isotypic with milarite and related [12] C [9] B 2 [6] A 2 [4] T23 [[4] T112O30] compounds. The C-site is dominated by potassium, the B-site is almost half occupied by sodium, and the A-site is dominated by Mg. The site-scattering at the T2-site can be refined to a Be/(Be + Mg) value close to 0.61; the T1-site is occupied by Si. Micro-Raman spectroscopy reveals an increasing splitting of scattering bands around 550 cm−1 for friedrichbeckeite. The mineral can be classified as an unbranched ring silicate or as a beryllo-magnesiosilicate. With respect to the end-member formula K (□0.5Na0.5)2 Mg2 Be3 [Si12O30] friedrichbeckeite represents the Mg-dominant analogue of almarudite, milarite or oftedalite. The mineral and its paragenesis were formed during pyrometamorphic modifications of the silicate-rich xenoliths enclosed in Quaternary leucite-tephritic lava of the Bellerberg volcano. Holotype material of friedrichbeckeite has been deposited at the mineral collection of the Naturhistorisches Museum Wien, Austria. The mineral is named friedrichbeckeite in honour of the Austrian mineralogist and petrographer Friedrich Johann Karl Becke (1855–1931).

Keywords

Cordierite Enstatite Fluorapatite Tridymite Ewald Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank J. Jahn (Neuwied, Germany) for providing the material studied in the present paper, M. Wagner for sample preparations as well as T. Ntaflos, U. Klötzli, M. A. Götzinger and G. Giester (all Wien, Austria) for their support with the chemical microanalyses and single-crystal X-ray diffraction. The useful comments of CNMNC members and the detailed suggestions of M. Cooper (Winnipeg, Canada) and an anonymous reviewer as well as the considerable improvements of the Associate Editor A. Chakhmouradian (Winnipeg, Canada) are gratefully acknowledged. The work was supported by the International Centre for Diffraction Data through Grant 90–03.

References

  1. Abraham K, Gebert W, Medenbach O, Schreyer W, Hentschel G (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contrib Mineral Petrol 82:252–258CrossRefGoogle Scholar
  2. Armbruster T (1989) Crystal chemistry of double-ring silicates: structure of roedderite at 100 and 300 K. Eur J Mineral 1:715–718Google Scholar
  3. Armbruster T (1999) Si, Al ordering in the double-ring silicate armenite, BaCa2Al6Si9O30·2H2O: A single-crystal X-ray and 29Si MAS NMR study. Am Mineral 84:92–101Google Scholar
  4. Armbruster T, Bermanec V, Wenger M, Oberhänsli R (1989) Crystal chemistry of double-ring silicates: structure of natural and dehydrated milarite at 100 K. Eur J Mineral 1:353–362Google Scholar
  5. Armbruster T, Oberhänsli R (1988a) Cystal chemistry of double-ring silicates : Structural, chemical and optical variation in osumilites. Am Mineral 77:585–594Google Scholar
  6. Armbruster T, Oberhänsli R (1988b) Crystal chemistry of double-ring silicates: Structures of sugilite and brannockite. Am Mineral 73:595–600Google Scholar
  7. Baerlocher C, Meier WM, Olson DH (2001) Atlas of zeolite framework types, 5th Ed. Elsevier, Amsterdam, The Netherlands, p 302Google Scholar
  8. Becke F (1892) Petrographische Studien am Tonalit des Rieserferner. Tschermaks Mineral Petrogr Mitth 13:379–430 cf. p 386Google Scholar
  9. Bogaard P, Schmincke H-U (1990) Die Entwicklungsgeschichte des Mittelrheinraumes und die Eruptionsgeschichte des Osteifel-Vulkanfeldes. In: Schirmer W (ed) Rheingeschichte zwischen Mosel und Maas. Deuqua Führer, 1. Hannover, Germany, pp 166–190Google Scholar
  10. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197Google Scholar
  11. Brown ID (1996) VALENCE: a program for calculating bond valences. J Appl Crystallogr 29:479–480CrossRefGoogle Scholar
  12. Bunch TE, Fuchs LH (1969) Yagiite, a new sodium-magnesium analogue of osumilite. Am Mineral 54:14–18Google Scholar
  13. Černý P, Hawthorne FC, Jarosewich E (1980) Crystal chemistry of milarite. Can Mineral 18:41–57Google Scholar
  14. Chester AH (1896) A dictionary of the names of minerals including their history and etymology. Wiley and Sons, New York, p 320Google Scholar
  15. Cooper MA, Hawthorne FC, Ball NA, Černý P, Kristiansen R (2006) Oftedalite, (Sc, Ca, Mn2+) 2 K (Be, Al) 3 Si12O30, a new member of the milarite group from the Heftetjern pegmatite, Tørdal, Norway: Description and crystal structure. Can Mineral 44:943–949CrossRefGoogle Scholar
  16. Cooper MA, Hawthorne FC, Grew ES (1999) The crystal chemistry of sogdianite, a milarite-group mineral. Am Mineral 84:764–768Google Scholar
  17. Dodd RT, van Schmus WR, Marvin UB (1965) Merrihueite, a new alkali-ferromagnesian silicate from the Mezö-Madaras chondrite. Science 149:972–974CrossRefGoogle Scholar
  18. Downs RT (2006) The RRUFF Project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03–13Google Scholar
  19. Dowty E (2006) ATOMS: A computer program for displaying atomic structures. Kingsport TN 37663, USAGoogle Scholar
  20. Embrey PG, Fuller JP (1980) A manual of new mineral names 1892–1978. Oxford University Press, New York, p 467Google Scholar
  21. Ferraris G, Prencipe M, Pautov LA, Sokolova EV (1999) The crystal structure of darapiosite and a comparison with Li-and Zn-bearing minerals of the milarite group. Can Mineral 37:769–774Google Scholar
  22. Fischer RX, Lengauer CL, Tillmanns E, Ensink RJ, Reiss CA, Fantner EJ (1993) PC-Rietveld plus, a comprehensive Rietveld analysis package for PC. Mater Sci Forum 133–136:287–292CrossRefGoogle Scholar
  23. Fischer RX, Tillmanns E (1988) The equivalent isotropic displacement factor. Acta Crystallogr C44:775–776Google Scholar
  24. Forbes WC, Baur WH, Khan AA (1972) Crystal chemistry of milarite-type minerals. Am Mineral 57:463–472Google Scholar
  25. Gandolfi G (1964) Metodo per ottenere uno spettro di polveri da un cristallo singolo di piccole dimensioni (fino a 30 μ). Mineral. Petrogr. Acta 10:149–156Google Scholar
  26. Grice JD, Erict TS, Van Velthuizen J, Dunn PJ (1987) Poudretteite, KNa2B3Si12O30, a new member of the osumilite group from Mont Saint-Hilaire, Quebec, and its crystal structure. Can Mineral 25:763–766Google Scholar
  27. Hawthorne FC (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Can Mineral 40:699–710CrossRefGoogle Scholar
  28. Hawthorne FC, Kimata M, Černý P, Ball N, Rossman GR, Grice JD (1991) The crystal chemistry of the milarite-group minerals. Am Mineral 76:1836–1856Google Scholar
  29. Hawthorne FC, Smith JV (1986) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 3D nets based on insertion of 2-connected vertices into 3-connected plane nets. Z Kristallogr 175:15–30Google Scholar
  30. Hentschel G (1987) Die Mineralien der Eifelvulkane, 2nd Ed. Weise, München, Germany, p 177Google Scholar
  31. Hrauda N (2006) Manganführende Minerale der Osumilithgruppe aus dem Eifelgebiet. Diploma thesis, Universität Wien, Wien, p 104Google Scholar
  32. Irran E, Tillmanns E, Hentschel G (1997) Ternesite, Ca5(SiO4) 2(SO4), a new mineral from the Ettringer Bellerberg, Eifel, Germany. Mineral Petrol 60:121–132CrossRefGoogle Scholar
  33. Khan AA, Baur WH, Forbes WC (1972) Synthetic magnesian merrihueite, dipotassium pentamagnesium dodecasilicate: a tetrahedral magnesiosilicate framework crystal structure. Acta Crystallogr B28:267–272Google Scholar
  34. Krause W, Blass G, Effenberger H (1999) Schäferite, a new vanadium garnet from the Bellberg volcano, Eifel, Germany. N Jb Mineral Mh 1999:123–134Google Scholar
  35. Liebau F (1985) Structural chemistry of silicates. Springer, Berlin, Germany, p 347Google Scholar
  36. Łodziński M, Wrzalik A, Sitarz M (2005) Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland. J Mol Str 744–747:1017–1026Google Scholar
  37. Mandarino JA (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Can Mineral 19:441–450Google Scholar
  38. McMillan P, Putnis A, Carpenter M (1984) A Raman spectroscopic study of Al-Si ordering in synthetic magnesium cordierite. Phys Chem Minerals 10:256–260CrossRefGoogle Scholar
  39. Meyer W (1994) Geologie der Eifel, 3rd Ed. Schweizerbart, Stuttgart, Germany, p 618Google Scholar
  40. Mighell AD, Hubbard CR, Stalick JK (1981) NBS*AIDS83: A FORTRAN program for crystallographic data evaluation. NBS Technical Note 1141Google Scholar
  41. Mihajlović T, Lengauer CL, Ntaflos T, Kolitsch U, Tillmanns E (2004) Two new minerals, rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(□, Na) 2(Mn, Fe, Mg) 2(Be, Al) 3[Si12O30], and a study on iron-rich wadalite, Ca12[(Al8Si4Fe2) O32]Cl6, from the Bellerberg (Bellberg) volcano, Eifel, Germany. N Jb Mineral Abh 179:265–294CrossRefGoogle Scholar
  42. Otwinowski Z, Borek D, Majewski W, Minor W (2003) Multiparametric scaling of diffraction intensities. Acta Crystallogr A59:228–234Google Scholar
  43. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology Series Vol 276: Macromolecular Crystallogr A 307–326 (Carter CW, Sweet RM Eds.), Academic, San DiegoGoogle Scholar
  44. Pautov LA, Agakhanov AA (1997) Berezanskite, KLi3Ti2Si12O30, a new mineral. Zap Vseross Mineral Obshch 126(4):75–80Google Scholar
  45. Pautov LA, Agakhanov AA, Sokolova EV (1998) Shibkovite K(Ca, Mn, Na) 2(K2-x□x) Zn3Si12O30-a new mineral of the milarite group. Zap Vseross Mineral Obshch 127(4):89–94Google Scholar
  46. Pautov LA, Agakhanov AA, Sokolova EV, Ignatenko KI (1996) Dusmatovite a new mineral of the milarite group. Vestnik Moscov Univ, Ser 4 Geol (2):54–60Google Scholar
  47. Poon WCK, Putnis A, Salje E (1990) Structural states of Mg cordierite: IV. Raman spectroscopy and local order parameter behaviour. J Phys Condens Matter 2:6361–6372Google Scholar
  48. Postl W, Walter F, Ettinger K, Hauzenberger C, Bojar HP (2004) Trattnerite, (Fe, Mg) 2(Mg, Fe) 3[Si12O30], a new mineral of the milarite group: mineral data and crystal structure. Eur J Mineral 16:375–380CrossRefGoogle Scholar
  49. Rüdinger B, Tillmanns E, Hentschel G (1993) Bellbergite-a new mineral with the zeolite structure type EAB. Mineral Petrol 48:147–152CrossRefGoogle Scholar
  50. Schreyer W, Hentschel G, Abraham K (1983) Osumilith in der Eifel und die Verwendung dieses Minerals als petrogenetischer Indikator. Tschermaks Mineral Petrogr Mitt 31:215–234CrossRefGoogle Scholar
  51. Sheldrick GM (1997) SHELXS-97 and SHELXL-97. Universität Göttingen, Göttingen, GermanyGoogle Scholar
  52. Straumanis M, Jevinš A (1936) Präzisionsaufnahmen nach dem Verfahren von Debye und Scherrer. II. Z Physik 98:461–475CrossRefGoogle Scholar
  53. Velde D, Medenbach O, Wagner C, Schreyer W (1989) Chayesite, K(Mg, Fe2 +) 4Fe3 + [Si12O30]: A new rock forming silicate mineral of the osumilite group from the Moon Canyon (Utah) lamproite. Am Mineral 74:1368–1373Google Scholar
  54. Wilson AJC, Prince E (1999) International tables for crystallography, vol C. Mathematical, physical and chemical tables. 2nd Ed, Kluwer, Dordrecht, The Netherlands, 992 ppGoogle Scholar
  55. Winter W, Armbruster T, Lengauer CL (1995) Crystal structure refinement of synthetic osumilite-type phases: BaMg2Al6Si9O30, SrMg2Al6Si9O30 and Mg2Al4Si11O30. Eur J Mineral 7:227–286Google Scholar
  56. Winter W, Berger A, Müller G, Pannhorst W (1993) Crystallization mechanism of MAS osumilite with composition Mg2Al4Si11O30 from glass. J Am Ceram Soc 76:1837–1843CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • C. L. Lengauer
    • 1
  • N. Hrauda
    • 2
  • U. Kolitsch
    • 3
  • R. Krickl
    • 1
  • E. Tillmanns
    • 1
  1. 1.Institut für Mineralogie und KristallographieUniversität Wien-GeozentrumWienAustria
  2. 2.Institut für Halbleiter- und FestkörperphysikJohannes Keppler Universität LinzLinzAustria
  3. 3.Mineralogisch-Petrographische Abteilung, Naturhistorisches MuseumWienAustria

Personalised recommendations