Skip to main content
Log in

Downregulation of ITGA5 inhibits lymphangiogenesis and cell migration and invasion in male laryngeal squamous cell carcinoma

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

ITGA5, a fibronectin receptor was highly expressed in laryngeal squamous cell carcinoma (LSCC) samples and was related to poor survival. However, the potential mechanism remains unclear. To elucidate the regulatory role of ITGA5 in LSCC progression, we investigated the effect of ITGA5 expression on lymphangiogenesis, migration, and invasion of LSCC cells in vitro and in vivo using immunohistochemistry, siRNA transfection, qRT-PCR, western blotting, enzyme-linked immunosorbent assay, flow cytometry, transwell co-culture, tube formation, cell migration, and invasion assays, and a subcutaneous graft tumor model. The expression of ITGA5 was higher in the LSCC tissues and linked to lymph node metastasis and T staging. Moreover, ITGA5 expression was significantly positively correlated with VEGF-C expression, and the lymphatic vessel density of patients with high ITGA5 expression was noticeably higher than that of patients with low ITGA5 expression. Additionally, it was found in vitro that downregulation of ITGA5 expression not only inhibited the expression and secretion of VEGF-C, but also suppressed the tube-forming ability of human lymphatic endothelial cells (HLECs) and the migration and invasion ability of LSCC cells, while exogenous VEGF-C supplementation reversed these phenomena. Furthermore, a tumor xenograft assay showed that si-ITGA5 restrained the growth and metastasis of TU212-derived tumors in vivo. Our findings suggested that ITGA5 induces lymphangiogenesis and LSCC cell migration and invasion by enhancing VEGF-C expression and secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8(8):604–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Alexander JS, Orr AW (2012) Integrins and their extracellular matrix ligands in lymphangiogenesis and lymph node metastasis. Int J Cell Biol 2012:853703

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Jiang SY, Yuan J et al (2018) Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of microRNA-326/cortactin expression. Gynecol Endocrinol 34(10):853–858

    Article  CAS  PubMed  Google Scholar 

  • Da MX, Wu Z, Tian HW (2008) Tumor lymphangiogenesis and lymphangiogenic growth factors. Arch Med Res 39(4):365–372

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Wan Q, Yan WX (2019) Integrin α5/ITGA5 promotes the proliferation, migration, invasion and progression of oral squamous carcinoma by epithelial–mesenchymal transition. Cancer Manag Res 11:9609–9620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99(Pt B):148–160

    Article  CAS  PubMed  Google Scholar 

  • Dietrich T, Onderka J, Bock F et al (2007) Inhibition of inflammatory lymphangiogenesis by integrin alpha5 blockade. Am J Pathol 171(1):361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du YJ, Shao SL, Lv MH et al (2020) Radiotherapy versus surgery–which is better for patients with T1-2N0M0 glottic laryngeal squamous cell carcinoma? Individualized survival prediction based on web-based nomograms. Front Oncol 10:1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Durré T, Morfoisse F, Erpicum C et al (2018) uPARAP/Endo180 receptor is a gatekeeper of VEGFR-2/VEGFR-3 heterodimerisation during pathological lymphangiogenesis. Nat Commun 9(1):5178

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan QC, Tian H, Wang Y et al (2019) Integrin-α5 promoted the progression of oral squamous cell carcinoma and modulated PI3K/AKT signaling pathway. Arch Oral Biol 101:85–91

    Article  CAS  PubMed  Google Scholar 

  • Fang ST, Chen S, Nurmi H et al (2020) VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Blood 136(16):1871–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghajar CM, Peinado H, Mori H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Dong Y, Zhang Y et al (2021) Sequential release of pooled siRNAs and paclitaxel by aptamer functionalized shell−core nanoparticles to overcome paclitaxel resistance of prostate cancer. ACS Appl Mater Interfaces 13(12):13990–14003

    Article  CAS  PubMed  Google Scholar 

  • He M, Cheng Y, Li W et al (2010) Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. BMC Cancer 10:170

    Article  PubMed  PubMed Central  Google Scholar 

  • He KW, Sun JJ, Liu ZB et al (2017) Prognostic significance of lymphatic vessel invasion diagnosed by D2-40 in Chinese invasive breast cancers. Medicine 96(44):e8490

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa S (2009) From tumor lymphangiogenesis to lymphvascular niche. Cancer Sci 100(6):983–989

    Article  CAS  PubMed  Google Scholar 

  • Hu XT, Luo JC (2018) Heterogeneity of tumor lymphangiogenesis: progress and prospects. Cancer Sci 109(10):3005–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SW, Yang HY, Huang WJ et al (2019) WMJ-S-001, a novel aliphatic hydroxamate-based compound, suppresses lymphangiogenesis through p38mapk-p53-survivin signaling cascade. Front Oncol 9:1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahn HJ, Bailey D, Marks A (2002) Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod Pathol 15(4):434–440

    Article  PubMed  Google Scholar 

  • Kim CH (2005) The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr Opin Hematol 12(4):298–304

    Article  CAS  PubMed  Google Scholar 

  • Kong DG, Zhou HB, Neelakantan D et al (2021) VEGF-C mediates tumor growth and metastasis through promoting EMT-epithelial breast cancer cell crosstalk. Oncogene 40(5):964–979

    Article  CAS  PubMed  Google Scholar 

  • Li T, Wu Q, Liu DQ et al (2020) miR-27b suppresses tongue squamous cell carcinoma epithelial–mesenchymal transition by targeting ITGA5. Onco Targets Ther 13:11855–11867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin QY, Bai J, Liu JQ et al (2020) Angiotensin II stimulates the proliferation and migration of lymphatic endothelial cells through angiotensin Type 1 receptors. Front Physiol 11:560170

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu LP, Lin CY, Liang WJ et al (2015) TBL1XR1 promotes lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma. Gut 64(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Xie R, Wei R et al (2019) Integrin α5 subunit is required for the tumor supportive role of fibroblasts in colorectal adenocarcinoma and serves as a potential stroma prognostic marker. Mol Oncol 13(12):2697–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv XH, Liu BQ, Li XM et al (2016) Integrin α4 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in human colon cancer. Anat Rec 299(6):741–747

    Article  CAS  Google Scholar 

  • Ma CQ, Luo CH, Yin HF et al (2018a) Kallistatin inhibits lymphangiogenesis and lymphatic metastasis of gastric cancer by downregulating VEGF-C expression and secretion. Gastric Cancer 21(4):617–631

    Article  CAS  PubMed  Google Scholar 

  • Ma QL, Dieterich LC, Detmar M (2018b) Multiple roles of lymphatic vessels in tumor progression. Curr Opin Immunol 53:7–12

    Article  CAS  PubMed  Google Scholar 

  • Melincovici CS, Boşca AB, Şuşman S et al (2018) Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59(2):455–467

    PubMed  Google Scholar 

  • Okazaki T, Ni A, Ayeni OA et al (2009) alpha5 beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol 174(6):2378–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantano F, Croset M, Driouch K et al (2021) Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene 40(7):1284–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadan WS, Zaher DM, Altaie AM et al (2020) Potential therapeutic strategies for lung and breast cancers through understanding the anti- angiogenesis resistance mechanisms. Int J Mol Sci 21(2):565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang LJ, Ju HQ, Liu GP et al (2018) LncRNA CamK-A regulates Ca2+-signaling mediated tumor microenvironment remodeling. Mol Cell 72(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  • Wang ZL, Yao C, Li XF et al (2012) Expression of VEGF-C/VEGFR-3 in human laryngeal squamous cell carcinomas and its significance for lymphatic metastasis. Asian Pac J Cancer Prev 13(1):27–31

    Article  PubMed  Google Scholar 

  • Wang XT, Wang B, Xie JQ et al (2018) Melatonin inhibits epithelial-to-mesenchymal transition in gastric cancer cells via attenuation of IL 1β/NFκB/MMP2/MMP9 signaling. Int J Mol Med 42(4):2221–2228

    CAS  PubMed  Google Scholar 

  • Wang N, Yan HH, Wu D et al (2020a) PRMT5/Wnt4 axis promotes lymph-node metastasis and proliferation of laryngeal carcinoma. Cell Death Dis 11(10):864

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XT, Chen CW, Zheng XM et al (2020b) Expression and prognostic significance of melatonin receptor MT1 in patients with gastric adenocarcinoma. Neoplasma 67(2):415–420

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wu D, Long Q et al (2021) Dysregulated YY1/PRMT5 axis promotes the progression and metastasis of laryngeal cancer by targeting Hippo pathway. J Cell Mol Med 25:946–959

    Article  CAS  Google Scholar 

  • Wong AW, Paulson QX, Hong J et al (2011) Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway. J Exp Clin Cancer Res 30(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia CF, Dong XS, Li H et al (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl) 135(5):584–590

    Article  PubMed  Google Scholar 

  • Xu YC, Zhang QY, Zhou J et al (2019) Down-regulation of SOX18 inhibits laryngeal carcinoma cell proliferation, migration, and invasion through JAK2/STAT3 signaling. Biosci Rep 39(7):BSR20182480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Chu ST, Fei BY et al (2019) O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp Cell Res 382(2):111464

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Groopman JE, Wang JF (2005) Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin alpha5 beta1. J Cell Physiol 202(1):205–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cheng SL, Bian K et al (2015) MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget 6(4):2277–2289

    Article  PubMed  Google Scholar 

  • Zhang WM, Hong RX, Lin L et al (2018) The chromosome 11q13.3 amplification associated lymph node metastasis is driven by miR-548k through modulating tumor microenvironment. Mol Cancer 17(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Shen Y, Wei Z et al (2022) ITGA5 is an independent prognostic biomarker and potential therapeutic target for laryngeal squamous cell carcinoma. J Clin Lab Anal 36(2):e24228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Wang G, Zhu HX et al (2021) ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors. BMC Cancer 21(1):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 81902125); Fujian Provincial Natural Fund (grant number: 2019J01460); Joint Funds for the Innovation of Science and Technology, Fujian Province (grant number: 2018Y9020); and Government-funded Project of the Construction of High-level Laboratory (grant number: Min201704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuwen Yang or Huifang Huang.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Fujian Medical University Union Hospital (approval number: 2020KY056). All animal experimental procedures were approved by the Animal Care and Use Committee of the 900th Hospital of the People’s Liberation Army Joint Service Support Force (2020-044) and conducted in accordance with the U.K. Animals (Scientific Procedures) Act.

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Handling Editor: Jörn Bullerdiek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 11 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Huang, J., You, R. et al. Downregulation of ITGA5 inhibits lymphangiogenesis and cell migration and invasion in male laryngeal squamous cell carcinoma. Protoplasma 260, 1569–1580 (2023). https://doi.org/10.1007/s00709-023-01873-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-023-01873-3

Keywords

Navigation