Skip to main content
Log in

Dynamics of annatto pigment synthesis and accumulation in seeds of Bixa orellana L. revealed by integrated chemical, anatomical, and RNA-Seq analyses

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Bixin is a commercially valuable apocarotenoid pigment found in the seed aril of Bixa orellana. The dynamics and regulation of its biosynthesis and accumulation during seed development remain largely unknown. Here, we combined chemical, anatomical, and transcriptomic data to provide stage-specific resolution of the cellular and molecular events occurring during B. orellana seed development. Seeds at five developmental stages (S1–S5) were used for analysis of bixin content and seed anatomy, and three of them (S1, S3, and S4) were selected for Illumina HiSeq sequencing. Bixin accumulated in large quantities in seeds compared with other tissues analyzed, particularly during the S2 stage, peaking at the S4 stage, and then decreasing slightly in the S5 stage. Anatomical analysis revealed that bixin accumulated in the large central vacuole of specialized cells, which were scattered throughout the developing mesotesta at the S2 stage, but enlarged progressively at later stages, until they occupied most of the parenchyma in the aril. A total of 13 million reads were generated and assembled into 73,381 protein-encoding contigs, from which 312 were identified as containing 1-deoxy-D-xylulose-5-phosphate/2-C-methyl-D-erythritol-4-phosphate (DOXP/MEP), carotenoid, and bixin pathways genes. Differential transcriptome expression analysis of these genes revealed that 50 of them were sequentially and differentially expressed through the seed developmental stages analyzed, including seven carotenoid cleavage dioxygenases, eight aldehyde dehydrogenases, and 22 methyltransferases. Taken together, these results show that bixin synthesis and accumulation in seeds of B. orellana are a developmentally regulated process involving the coordinated expression of DOXP/MEP, carotenoid, and bixin biosynthesis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the paper and within its supplementary materials published online. Candidate gene sequences are available at the GenBank database of the NCBI under accession numbers MW885276 to MW885587.

References

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Inst. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 10 June 2021

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina Sequence Data. Bioinforma 30:2114–2120

    Article  CAS  Google Scholar 

  • Bouvier F, Dogbo O, Camara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Sci 300:2089–2091

    Article  CAS  Google Scholar 

  • Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballo-Uicab VM, Cárdenas-Conejo Y, Vallejo-Cardona AA, Aguilar-Espinosa M, Rodríguez-Campos J, Serrano-Posada H, Narváez-Zapata JA, Vázquez-Flota F, Rivera-Madrid R (2019) Isolation and functional characterization of two dioxygenases putatively involved in bixin biosynthesis in annatto (Bixa orellana L.). PeerJ 7:e7064

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, Aguilar-Espinosa M, Comai L, Rivera-Madrid R (2015) De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. BMC Genomics 16:877

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho PRN, Silva MG, Fabri EG, Tavares PER, Martins ALM, Spatti LR (2010) Concentração de bixina e lipídios em sementes de urucum da coleção do Instituto Agronômico (IAC). Bragantia 69:519–524

    Article  CAS  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2003) The SABATH family of methyltransferases in Arabidopsis thaliana and other plant species. Recent Adv Phytochem 37:9–125

    Google Scholar 

  • Faria DV, Correia LNFC, Souza MVC, Ríos-Ríos AM, Vital CE, Batista DS, Costa MGC, Otoni WC (2019) Irradiance and light quality affect two annatto (Bixa orellana L.) cultivars with contrasting bixin production. J Photochem Photobiol B 197:111549

    Article  CAS  PubMed  Google Scholar 

  • Faria DV, Correia LNF, Batista DS, Vital CE, Heringer AS, De-la-Peña C, Costa MGC, Guerra MP, Otoni WC (2020) 5-Azacytidine downregulates the SABATH methyltransferase genes and augments bixin content in Bixa orellana L. leaves. Plant Cell Tissue Organ Cult 142:425–434

    Article  CAS  Google Scholar 

  • Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002) Occurrence and localization of apocarotenoids in arbuscular mycorrhizal roots. Plant Cell Physiol 43:256–265

    Article  CAS  PubMed  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano G, Rosati C, Bramley PM (2003) To dye or not to dye: biochemistry of annatto unveiled. Trends Biotechnol 21:513–516

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Parra-Veja V, Rivas-Sendra A, Seguí-Simarro JM, Molina RV, Pallotti C, Rubio-Moraga A, Diretto G, Prieto A, Ahrazem O (2017) Unraveling massive crocins transport and accumulation through proteome and microscopy tools during the development of saffron stigma. Int J Mol Sci 18:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Gasic K, Korban SS (2007) Multiple-copy cluster-type organization and evolution of genes encoding o-methyltransferases in apple. Genet 176:2625–2635

    Article  CAS  Google Scholar 

  • Hou X, Rivers J, León P, McQuinn RP, Pogson BJ (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21:792–803

    Article  CAS  PubMed  Google Scholar 

  • Jako C, Coutu C, Roewer I, Reed DW, Pelcher LE, Covello PS (2002) Probing carotenoid biosynthesis in developing seed coats of Bixa orellana (Bixaceae) through expressed sequence tag analysis. Plant Sci 163:141–145

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  PubMed  Google Scholar 

  • Louro RP, Santiago LJ (2016) Development of carotenoid storage cells in Bixa orellana L. seed arils. Protoplasma 253:77–86

    Article  CAS  PubMed  Google Scholar 

  • Machado KLG (2022) The module mir156/spl affects bixin biosynthesis pathway in annatto (Bixa orellana L.). PhD thesis, Universidade Federal de Viçosa, Viçosa, Brazil. https://doi.org/10.47328/ufvbbt.2022.323

  • Mercadante AZ, Pfander H (1998) Carotenoids from annatto: a review. Recent Res Devel Agric Food Chem 2:79–91

    Google Scholar 

  • Mercadante AZ, Steck A, Pfander H (1997) Isolation and identification of new apocarotenoids from annatto (Bixa orellana) seeds. J Agric Food Chem 45:1050–1054

    Article  CAS  Google Scholar 

  • Moreira VS, Soares VLF, Silva RJS, Sousa AO, Otoni WC, Costa MGC (2018) Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L. Physiol Mol Biol Plants 24:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmiya A (2009) Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnol 25:351–358

    Article  Google Scholar 

  • Peng G, Wang C, Song S, Fu X, Azam M, Grierson D, Xu C (2013) The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. Plant Physiol Biochem 71:67–76

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Madrid R, Burnell J, Aguilar-Espinosa ML, Rodríguez-Ávila NL, Lugo-Cervantes E, Saenz-Carbonell LA (2013) Control of carotenoid gene expression in Bixa orellana L. leaves treated with norflurazon. Plant Mol Biol Rep 31:1422–1432

    Article  CAS  Google Scholar 

  • Rodríguez-Ávila NL, Narváez-Zapata JA, Ramírez-Benítez JE, Aguilar-Espinosa ML, Rivera-Madrid R (2011) Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana. J Exp Bot 62:5385–5395

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu SS, Loaiza CD, Kaundal R (2020) Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches. AoB Plants 12:plz068

    Article  CAS  PubMed  Google Scholar 

  • Saladié M, Wright LP, Garcia-Mas J, Rodríguez-Concepción M, Phillips MA (2014) The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. J Exp Bot 65:5077–5092

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankari M, Hridya H, Sneha P, Doss CGP, Christopher JG, Mathew J, Zayed H, Ramamoorthy S (2019) Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. Funct Integr Genomics 19:565–574

    Article  CAS  PubMed  Google Scholar 

  • Soares VLF, Rodrigues SM, de Oliveira TM, de Queiroz TO, Lima LS, Hora-Júnior BT, Gramacho KP, Micheli F, Cascardo JCM, Otoni WC, Gesteira AS, Costa MGC (2011) Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis. Mol Biol Rep 38:1329–1340

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74

    Article  PubMed  Google Scholar 

  • Tirimanna ASL (1981) Study of the carotenoid pigments of Bixa orellana L. seeds by thin layer chromatography. Microchim Acta 2:11–16

    Article  CAS  Google Scholar 

  • Tola AJ, Jaballi A, Germain H, Missihoun TD (2021) Recent development on plant aldehyde dehydrogenase enzymes and their functions in plant development and stress signaling. Genes 12:51

    Article  CAS  Google Scholar 

  • Us-Camas R, Aguilar-Espinosa M, Rodríguez-Campos J, Vallejo-Cardona AA, Carballo-Uicab VM, Serrano-Posada H, Rivera-Madrid R (2022) Identifying Bixa orellana L. new carotenoid cleavage dioxygenases 1 and 4 potentially involved in bixin biosynthesis. Front Plant Sci 13:829089

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Watanabe N, Mita S, Ueda Y, Shibuya M, Ebizuka Y (2003) Two o-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. J Biosci Bioeng 96:119–128

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Deng L, Zhou Y, Yao S, Zeng K (2018) Analysis of changes in volatile constituents and expression of genes involved in terpenoid metabolism in oleocellosis peel. Food Chem 243:269–276

    Article  CAS  PubMed  Google Scholar 

  • Yabiku HY, Takahashi MY (1991) Avaliação dos métodos analíticos para determinação da bixina em grãos de urucum e suas correlações. In: Seminário de Corantes Naturais para Alimentos, 2: Simpósio Internacional de Urucum. ITAL/IAC, Campinas, SP, pp 275–279

Download references

Acknowledgements

We gratefully acknowledge the material and technical support provided by Carlos Priminho Pirovani (Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil). We would like to thank Editage (www.editage.com) for English language editing. We also gratefully acknowledge the PhD scholarship provided by the CAPES Foundation to VSM. WCO and MGCC are CNPq Research Fellows.

Funding

This work was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil (grant number 473619/04–04); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasília, Brazil (grant number 2757/2010); Banco do Nordeste (BNB), Fortaleza, Ceará, Brazil (grant number 2004–1-22); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Belo Horizonte, Minas Gerais, Brazil (grants numbers APQ-02372–17 and APQ-00772–19); and Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil (grant number 00220.1100.787).

Author information

Authors and Affiliations

Authors

Contributions

VSM conducted the experiments. VSM, VLFS, VCS, AOS, KTSN, and MRS analyzed the data. VSM drafted the manuscript. VLFS, PVZCG, TNHR, CAEL, DVF, WCO, and MGCC supported the project and designed the experiments. VLFS, WCO, and MGCC revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Marcio Gilberto Cardoso Costa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Sonia Malik

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, V.S., de Souza, V.C., Soares, V.L.F. et al. Dynamics of annatto pigment synthesis and accumulation in seeds of Bixa orellana L. revealed by integrated chemical, anatomical, and RNA-Seq analyses. Protoplasma 260, 1207–1219 (2023). https://doi.org/10.1007/s00709-023-01842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-023-01842-w

Keywords

Navigation