Skip to main content
Log in

The opening of mitochondrial permeability transition pore (mPTP) and the inhibition of electron transfer chain (ETC) induce mitophagy in wheat roots under waterlogging stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Mitochondria are crucial for the regulation of intracellular energy metabolism, biosynthesis, and cell survival. And studies have demonstrated the role of mitochondria in oxidative stress–induced autophagy in plants. Previous studies found that waterlogging stress can induce the opening of mitochondrial permeability transition pore (mPTP) and the release of cytochrome c in endosperm cells, which proved that mPTP plays an important role in the programmed cell death of endosperm cells under waterlogging stress. This study investigated the effects of the opening of mPTP and the inhibition of ETC on mitophagy in wheat roots under waterlogging stress. The results showed that autophagy related genes in the mitochondria of wheat root cells could respond to waterlogging stress; waterlogging stress led to the degradation of the characteristic proteins cytochrome c and COXII in the mitochondria of root cells. With the prolongation of waterlogging time, the protein degradation degree and the occurrence of mitophagy gradually increased. Under waterlogging stress, exogenous mPTP opening inhibitor CsA inhibited mitophagy in root cells and alleviated mitophagy induced by flooding stress, while exogenous mPTP opening inducer CCCP induced mitophagy in root cells; exogenous mPTP opening inducer CCCP induced mitophagy in root cells. The electron transfer chain inhibitor antimycin A induces mitophagy in wheat root cells and exacerbates mitochondrial degradation. In conclusion, waterlogging stress led to the degradation of mitochondrial characteristic proteins and the occurrence of mitophagy in wheat root cells, and the opening of mPTP and the inhibition of ETC induced the occurrence of mitophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

mPTP:

Mitochondrial permeability transition pore

ETC:

Electron transfer chain

ATG:

Autophagy-related gene

MDC:

Dansylcadaverine

CsA:

Ciclosporin A

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

AA:

Antimycin A

PCD:

Programmed cell death

PBS:

Phosphate buffered saline

PAGE:

Polyacrylamide gel electrophoresis

ROS:

Reactive oxygen species

TEM:

Transmission electron microscope

References

  • Batoko H, Dagdas Y, Baluska F, Sirko A (2017) Understanding and exploiting autophagy signaling in plants. Essays Biochem 61:675–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi A, Jacques-Silva MC, Delgado-Cañedo A, Lenz G, Battastini AMO (2006) Nonsteroidal anti-inflammatory drugs inhibit the growth of C6 and U138-MG glioma cell lines. Eur J Pharmacol 532:214–222

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Di Lisa F, Fogolari F, Lippe G (2015) From ATP to PTP and back: a dual function for the mitochondrial ATP synthase. Circ Res 116:1850–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao J-R, Parganas E, Boyd K, Hong CY, Opferman JT, and Ihle JN (2008). Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452

  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155–4166

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liao B, Qi H, Xie L-J, Huang L, Tan W-J, Zhai N, Yuan L-B, Zhou Y, Yu L-J, Chen Q-F, Shu W, Xiao S (2015) Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. Autophagy 11:2233–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deffieu M, Bhatia-Kiššová I, Salin B, Klionsky DJ, Pinson B, Manon S, Camougrand N (2013) Increased levels of reduced cytochrome b and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. J Cell Sci 126:415–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong K, Zhen S, Cheng Z, Cao H, Ge P, Yan Y (2015) Proteomic analysis reveals key proteins and phosphoproteins upon seed germination of wheat (Triticum aestivum L). Front Plant Sci 6:1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedyaeva AV, Stepanov AV, Lyubushkina IV, Pobezhimova TP, Rikhvanov EG (2014) Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochemistry (Mosc) 79:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Gomes LC, Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833:205–212

    Article  CAS  PubMed  Google Scholar 

  • Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, Li R, Cossart P (2004) The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457–461

    Article  CAS  PubMed  Google Scholar 

  • Guan B, Lin Z, Liu D, Li C, Zhou Z, Mei F, Li J, Deng X (2019) Effect of waterlogging-induced autophagy on programmed cell death in roots. Front Plant Sci 10:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171:1551–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlton AA, Liu TT (2015) Mitochondrial dynamics and heart failure. Compr Physiol 6:507–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi MW (2014) ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nat Commun 5:4121

    Article  PubMed  Google Scholar 

  • Lemasters JJ, Qian T, Bradham CA, Brenner DA, Cascio WE, Trost LC, Nishimura Y, Nieminen AL, Herman B (1999) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 31:305–319

    Article  CAS  PubMed  Google Scholar 

  • Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chung T, Vierstra RD (2014) AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell 26:788–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ruan Y, Zhang K, Jian F, Hu C, Miao L, Gong L, Sun L, Zhang X, Chen S, Chen H, Liu D, Song Z (2016) Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ 23:380–392

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Liu G, Xue Y, Guo X, Luo J, Pan Y, Chen K, Tian, J, and Liang C (2021a). Functional characterization of aluminum (Al)-responsive membrane-bound NAC transcription factors in soybean roots. Int J Mol Sci 22

  • Lin Z, Wang Y-L, Cheng L-S, Zhou L-L, Xu Q-T, Liu D-C, Deng X-Y, Mei F-Z, and Zhou Z-Q (2021b). Mutual regulation of ROS accumulation and cell autophagy in wheat roots under hypoxia stress. Plant Physiol Biochem 158

  • Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V (2012) Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol Biochem 59:11–19

    Article  CAS  PubMed  Google Scholar 

  • Montava-Garriga L, Ganley IG (2020) Outstanding questions in mitophagy: what we do and do not know. J Mol Biol 432:206–230

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TN, Lazarou M (2021) Plant mitophagy: beware of friendly or you might get eaten. Curr Biol 31:R457–R458

    Article  CAS  PubMed  Google Scholar 

  • Qi Y-H, Mao F-F, Zhou Z-Q, Liu D-C, Min Y, Deng X-Y, Li J-W, Mei F-Z (2018) The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 255:1651–1665

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavan A, Sheiko T, Graham BH, Craigen WJ (2012) Voltage-dependant anion channels: novel insights into isoform function through genetic models. Biochim Biophys Acta 1818:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Feng L, Sun S, and Zhuang X (2021). Plant mitophagy in comparison to mammals: what is still missing? Int J Mol Sci 22

  • Reumann S, Voitsekhovskaja O, Lillo C (2010) From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 247:233–256

    Article  PubMed  Google Scholar 

  • Rohlena J, Dong L-F, Ralph SJ, Neuzil J (2011) Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 15:2951–2974

    Article  CAS  PubMed  Google Scholar 

  • Teardo E, Carraretto L, Wagner S, Formentin E, Behera S, De Bortoli S, Larosa V, Fuchs P, Lo Schiavo F, Raffaello A, Rizzuto R, Costa A, Schwarzländer M, Szabò I (2017) Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo. Plant Physiol 173:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Van Aken O, Ford E, Lister R, Huang S, Millar AH (2016) Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. Plant J 88:542–558

    Article  PubMed  Google Scholar 

  • van der Bliek AM, Sedensky MM, Morgan PG (2017) Cell biology of the mitochondrion. Genetics 207:843–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Tzfadia O, Levy M, Weithorn E, Peled-Zehavi H, Van Parys T, Van de Peer Y, Galili G (2016) hfAIM: a reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy 12:876–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelinová V, Demecsová L, Tamás L (2019) Impact of antimycin A and myxothiazol on cadmium-induced superoxide, hydrogen peroxide, and nitric oxide generation in barley root tip. Protoplasma 256:1375–1383

    Article  PubMed  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Chen Z, Qi J, Duan S, Huang Z, Zhang C, Wu L, Zeng M, Zhang B, Wang N, Mao H, Zhang A, Xing C, Yuan Y (2017) Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function. Oncotarget 8:20988–21000

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorov DB, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Zorov SD, Babenko VA, Jankauskas SS, Popkov VA, Savina PS (2014) Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry (Mosc) 79:1017–1031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Foundation of China (Grant No.31871530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuqing Zhou.

Additional information

Handling Editor: Peter Nick.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yueli Wang and Hailong Ye are co-authors.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ye, H., Gao, K. et al. The opening of mitochondrial permeability transition pore (mPTP) and the inhibition of electron transfer chain (ETC) induce mitophagy in wheat roots under waterlogging stress. Protoplasma 260, 1179–1191 (2023). https://doi.org/10.1007/s00709-022-01834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-022-01834-2

Keywords

Navigation