Skip to main content
Log in

Are the floral morphology and anatomy of Galphimia australis, an atypical neotropical Malpighiaceae, associated to a new pollination syndrome?

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The flowers of the species of Malpighiaceae in the Neotropical Region are relatively uniform in their morphology due to their dependence on oil-collecting bees as their main pollinators. However, many species of the genus Galphimia seem to have acquired a different floral syndrome, lacking markedly zygomorphic flowers and developed elaiophores in the calyx. Likewise, these species present anthers with great development, probably in response to the selection of pollinators that collect pollen. Galphimia australis incorporated some of these traits but also retained some residual characteristics typical of species pollinated by oil bees. This leads to many questions on how these flowers ensure their pollination. Inquiring about the reduction or modification of these characteristics allows us to understand how G. australis achieves a different pollination syndrome. In this research, we carry out a detailed morphological and anatomical study of the flowers and pollen grain devolvement of G. australis and floral visitors were observed and captured. Results were analyzed in order to determine how this species changed from the oil-floral syndrome, typical of neotropical Malpighiaceae, to one syndrome with pollen as the main reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Adachi SA, Machado SR (2020) Lip morphology and ultrastructure of osmophores in Cyclopogon (Orchidaceae) reveal a degree of morphological differentiation among species. Protoplasma 257:1139–1148. https://doi.org/10.1007/s00709-020-01499-9

    Article  CAS  PubMed  Google Scholar 

  • Aliscioni S, Gomiz NE, Agüero JI, Torretta JP (2022) Structural diversity of elaiophores in Argentine species of Malpighiaceae: morphology, anatomy, and interaction with pollinators. Protoplasma 259:789–807. https://doi.org/10.1007/s00709-021-01699-x

  • Aliscioni SS, Gotelli M, Torretta JP (2018) Structure of the stigma and style of Callaeum psilophyllum (Malpighiaceae) and its relation with potential pollinators. Protoplasma 255:1433–1442. https://doi.org/10.1007/s00709-018-1245-x

    Article  CAS  PubMed  Google Scholar 

  • Aliscioni SS, Gotelli M, Torretta JP (2019) Gynoecium with carpel dimorphism in Tricomaria usillo, comparison with other genera of the Carolus clade (Malpighiaceae). Protoplasma 256:1133–1144. https://doi.org/10.1007/s00709-019-01373-3

    Article  CAS  PubMed  Google Scholar 

  • Aliscioni SS, Torretta JP (2017) Malpighiaceae. In: Zuloaga FO, Belgrano MJ (eds) Flora Vascular de la República Argentina, 17. Estudio Sigma S.R.L., Buenos Aires, pp 163–205

  • Anderson CE (2005) Galphimia (Malpighiaceae) in South America. Contrib Univ Michigan Herb 24:1–12

    CAS  Google Scholar 

  • Anderson CE (2007) Revision of Galphimia (Malpighiaceae). Contr Univ Michigan Herb 25:1–82

    Google Scholar 

  • Anderson WR (1977) Byrsonimoideae, a new subfamily of the Malpighiaceae. Leandra 7:5–18

    Google Scholar 

  • Anderson WR (1979) Floral conservatism in neotropical Malpighiaceae. Biotropica 11:219–222. https://doi.org/10.2307/2388042

    Article  Google Scholar 

  • Anderson WR (1990) The origin of the Malpighiaceae. The evidence from morphology. Mem New York Bot Gard 64:210–222

    Google Scholar 

  • Anderson WR, Anderson C, Davis CC (2006) Malpighiaceae. http://herbarium.lsa.umich.edu/malpigh/index.html [accessed on 11.11.2022]

  • Araújo JS, Meira RMSA (2016) Comparative anatomy of calyx and foliar glands of Banisteriopsis CB Rob. (Malpighiaceae). Acta Bot Brasil 30:112–123. https://doi.org/10.1590/0102-33062015abb0248

    Article  Google Scholar 

  • Ashworth L, Aguilar R, Martén-Rodríguez S, Lopezaraiza-Mikel M, Avila-Sakar G, Rosas-Guerrero V, Quesada M (2015) Pollination syndromes: a global pattern of convergent evolution driven by the most effective pollinator. In: Pontarotti P, ed. Evolutionary biology. Biodiversification from genotype to phenotype. Cham, Switzerland, pp 203–224

  • Avalos AA, Torretta JP, Lattar EC, Ferrucci MS (2020) Structure and development of anthers and connective glands in two species of Stigmaphyllon (Malpighiaceae): are heteromorphic anthers related to division of labour? Protoplasma 257:1165–1181. https://doi.org/10.1007/s00709-020-01497-x

    Article  PubMed  Google Scholar 

  • Cameron KM, Chase MW, Anderson WR, Hills HG (2001) Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences. Amer J Bot 88:1847–1918. https://doi.org/10.2307/3558361

    Article  CAS  Google Scholar 

  • Cappellari SC, Haleem MA, Marsaioli AJ, Tidon R, Simpson BB (2011) Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae. Ann Bot 107:1323–1334. https://doi.org/10.1093/aob/mcr084

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro MDM, Demarco D (2008) Phenolic compounds produced by secretory structures in plants: a brief review. Nat Prod Commun 3:1273–1284

    CAS  Google Scholar 

  • Castro MA, Vega AS, Múlgura ME (2001) Structure and ultrastructure of leaf and calyx glands in Galphimia brasiliensis (Malpighiaceae). Amer J Bot 88:1935–1944

    Article  CAS  Google Scholar 

  • Cocucci AA, Holgado AM, Anton AM (1996) Estudio morfológico y anatómico de los eleóforos pedicelados de Dinemandra ericoides, Malpigiácea endémica del desierto de Atacama, Chile. Darwiniana 34:183–192. https://doi.org/10.14522/darwiniana.2014.341-4.404

  • Curry KJ, McDowell LM, Judd WS, Stern WL (1991) Osmophores, floral features, and systematics of Stanhopea (Orchidaceae). Amer J Bot 78:610–623. https://doi.org/10.1002/j.1537-2197.1991.tb12585

    Article  Google Scholar 

  • Dalmazzo M, González-Vaquero RA, Roig-Alsina A, Debandi G (2014) Halictidae. In: Roig-Juñent S, Claps LE, Morrone JJ. Biodiversidad de Artrópodos Argentinos IV. Ed. INSUE, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina, pp. 203–219.

  • David R, Carde JP (1964) Coloration differential le des inclusions lipidiques terpeniques des pseudo phylles du pin maritime au moyen du react if Nadi. Comptes Rendus 258:1338–1340

    CAS  Google Scholar 

  • Davis G (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Davis CC, Anderson WR (2010) A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. Amer J Bot 97:2031–2048. https://doi.org/10.3732/ajb.1000146

    Article  Google Scholar 

  • Davis CC, Anderson WR, Donoghue MJ (2001) Phylogeny of Malpighiaceae: evidence from chloroplast ndhF and trnl-F nucleotide sequences. Amer J Bot 88:1830–1846. https://doi.org/10.2307/3558360

    Article  CAS  Google Scholar 

  • Davis CC, Schaefer H, Xi Z, Baum DA, Donoghue MJ, Harmon LJ (2014) Long-term morphological stasis maintained by a plant-pollinator mutualism. PNAS 111:5914–5919. https://doi.org/10.1073/pnas.1403157111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CC, Marinho LC, Amorím AA (2020) Andersoniella: a new genus of Neotropical Malpighiaceae. Harvard Pap Bot 25:51–56. https://doi.org/10.3100/hpib.v25iss1.2020.n6

    Article  Google Scholar 

  • Dellinger AS (2020) Pollination syndromes in the 21st century: where do we stand and where may we go? New Phytol 228:1193–1213

    Article  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Ann Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons. https://doi.org/10.1002/0470047380

    Article  Google Scholar 

  • Gaglianone MC (2003) Abelhas da tribo Centridini na Estação Ecológica de Jataí (Luis Antônio, SP): composição de espécies e interações com flores de Malpighiaceae. In: Melo GAR, Alves-dos Santos I (eds.). Apoidea Neotropica: Homenagem aos 90 anos de Jesus Santiago Moure. Editora UNESC, Criciúma, pp. 279–284

  • Galati BG (2003) Ubisch bodies in angiosperms. Advances Pl Reprod Biol 2:1–20

    Google Scholar 

  • Galati BG, Gotelli MM, Dolinko AE, Rosenfeldt S (2019) Could microechinate orbicules be related to the release of pollen in anemophilous and ‘buzz pollination’species? Aust J Bot 67:16–35. https://doi.org/10.1071/BT18169

    Article  Google Scholar 

  • Gates B (1982) Banisteriopsis, Diplopterys (Malpighiaceae). Flora Neotropica 30:1–237

    Google Scholar 

  • Hassanpour S, Maherisis N, Eshratkhah B (2011) Plants and secondary metabolites (Tannins): r review. Int J Forest Soil Erosion 1:47–53

    Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64:240–272. https://doi.org/10.1007/BF02856566

    Article  Google Scholar 

  • Jensen W (1962) Botanical histochemistry. Freeman, San Francisco

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company Inc, London

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embriology of angiosperms, vol 1. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Kowalkowska AK, Kozieradzka-Kiszkurno M, Turzyński S (2015) Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae). Plant Syst Evol 301:609–622. https://doi.org/10.1007/s00606-014-1100-2

    Article  Google Scholar 

  • Lobreau-Callen D (1983) Analyse de la repartition géographique des Malphigiaceae d’apres les caractêres du pollen et de la pollinisation. Bothalia 14:871–881

    Article  Google Scholar 

  • Lobreau-Callen D (1984) Pollens and apoids of Senegal: pollination and behaviour. Rev Paléobiol 131–138.

  • Lobreau-Callen D (1989) Les Malpighiaceae et leurs pollinisateurs. Coadaptation Ou Coevolution Adansonia 11:79–94

    Google Scholar 

  • Lowrie SR (1982) The Palynology of the Malpighiaceae and its contribution to family systematics. PhD Dissertation, University of Michigan

  • Marinho CR, Souza CD, Barros TC, Teixeira SDP (2014) Scent glands in legume flowers. Plant Biol 16:215–226. https://doi.org/10.1111/plb.12000

    Article  CAS  PubMed  Google Scholar 

  • Miyashita RK, Nakasone HY, Lamoureux CH (1964) Reproductive morphology of acerola (Malpighia glabra L.). Hawaii Agricultural Experiment Station, University of Hawaii.

  • Neff JL, Simpson BB (1981) Oil-collecting structures in the Anthophoridae (Hymenoptera): morphology, function, and use in systematics. J Kansas Entomol Soc 54:95–123

    Google Scholar 

  • Pacek A, Stpiczynska M (2007) The structure of elaiophores in Oncidium cheirophorum Rchb. f. and Ornithocepha luskruegeri Rchb. f. [Orchidaceae]. Acta Agrobot 60:9–14

    Article  Google Scholar 

  • Pearse AGE, Hess R (1961) Substantivity and other factors responsible for formazan patterns in dehydrogenase histochemistry. Experientia 17:136–141. https://doi.org/10.1007/BF02160833

    Article  CAS  PubMed  Google Scholar 

  • Possobom CCF, Guimarães E, Machado SR (2015) Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora 211:26–39

    Article  Google Scholar 

  • Possobom CCF, Machado SR, Guimarães E (2016) Reproductive system of Diplopterys pubipetala (Malpighiaceae) plants from a savanna ecosystem. Inter J Plant Repr Biol 8:7–13

    Google Scholar 

  • Possobom CCF, Machado SR (2017) Elaiophores: their taxonomic distribution, morphology and functions. Acta Bot Brasil 31:503–524. https://doi.org/10.1590/0102-33062017abb0088

    Article  Google Scholar 

  • Possobom CC, Machado SR (2018) Elaiophores in three Neotropical Malpighiaceae species: a comparative study. Plant Syst Evol 304:15–32. https://doi.org/10.1007/s00606-017-1443-6

    Article  Google Scholar 

  • Qian Z, Meng Q, Ren M (2016) Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers. Biodiv Sci 24:1364–1372. https://doi.org/10.17520/biods.2016248

  • Roig-Alsina A (2013) El género Ceratina en la Argentina: revisión del subgénero Neoclaviceras ubg. n. (Hymenoptera, Apidae, Xylocopinae). Rev Mus Argentino Cienc Nat, ns15:121–143

  • Sazima M, Sazima I (1989) Oil-gathering bees visit flowers and glandular morphs of the oil-producing Malpighiaceae. Bot Acta 102:106–111. https://doi.org/10.1111/j.1438-8677.1989.tb00073.x

    Article  Google Scholar 

  • Simpson BB, Neff JL (1983) Evolution and diversity of floral rewards. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinold Co, New York, pp 142–159

    Google Scholar 

  • Siddiqui SA (1968) The microsporangium and the male gametophyte in Malpighia coccigera Linn. Beitr Biol Pflanzen 44:361–364

    Google Scholar 

  • Singh B (1959) Studies in the family Malpighiaceae. 1. Morphology of Thryallis glauca Kuntze. Hortic Adv 3:1–19

    Google Scholar 

  • Sigrist MR, Sazima M (2004) Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Ann Bot 94:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokoloff DD, Nuraliev MS, Oskolski AA, Remizowa MV (2017) Gynoecium evolution in angiosperms: monomery, pseudomonomery, and mixomery. Mosc Univer Biol Sci 72:97–108. https://doi.org/10.3103/S0096392517030105

    Article  Google Scholar 

  • Steiner KE (1985) Functional dioecism in the Malpighiaceae: the breeding system of Spachea membranacea Cuatr. Amer J Bot 72:1537–1543

    Article  Google Scholar 

  • Stern WL, Curry, KJ, Pridgeon AM (1987) Osmophores of Stanhopea (Orchidaceae). Amer J Bot 74.1323–1331. https://doi.org/10.1002/j.1537-2197.1987.tb08747.x

  • Subramanian RB, Arumugasamy K, Inamdar JA (1990) Studies in the secretory glands of Hiptage sericea (Malpighiaceae). Nord J Bot 10:57–62. https://doi.org/10.1111/j.1756-1051.1990.tb01753.x

    Article  Google Scholar 

  • Torretta JP, Aliscioni SS, González-Arzac A, Avalos AA (2017) Is the variation of floral elaiophore size in two species of Stigmaphyllon (Malpighiaceae) dependent on interaction with pollinators? Plant Ecol Divers 10:403–418

    Article  Google Scholar 

  • Torretta JP, Aliscioni SS, Marrero HJ, Avalos AA (2022) Oil flowers of Malpighiaceae and its oil-collecting bees: loyalty and robbery in a highly specialized system. Apidologie 53:1–15

    Article  Google Scholar 

  • Torretta JP, Roig-Alsina A (2017) Las abejas colectoras de aceite del género Paratetrapedia (Hymenoptera, Apidae, Tapinotaspidini) en la Argentina. Revista del Museo Argentino de Ciencias Naturales 19(2):131–140

    Article  Google Scholar 

  • von Ubisch G (1927) Zur Entwicklungsgeschichte der Antheren. Planta 3:490–495

    Article  Google Scholar 

  • Vogel S (1974) Ölblumen und ölsammelnde Bienen. Tropische Und Subtropische Pflanzenwelt 7:283–547

    Google Scholar 

  • Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem New York Bot Gard 55:130–142

    Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Zarlavsky GE (2014) Histología Vegetal: técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos Aires, Argentina.

  • Zhang W, Kramer EM, Davis CC (2016) Differential expression of CYC2 genes and the elaboration of floral morphologies in Hiptage, an Old World genus of Malpighiaceae. Int J Plant Sci 177:551–558. https://doi.org/10.1086/687225

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Zarvlasky for technical assistance; A. Roig-Alsina for helping with the determination of some bees; two anonymous reviewers for valuable comments, and the Administración de Parque Nacionales (Project NEA 294), and the Ministerio de Ecología y Recursos Naturales Renovables, province of Misiones, (Project “Estudio integral de interacciones entre especies de Malpighiaceae y sus polinizadores”), for permission to conduct part of this study in protected areas.

Funding

This work was funded by a research grant from Agencia Nacional de Promoción Científica y Tecnológica, grant number PICT 2013–1867 to S. Aliscioni, Consejo Nacional de Investigaciones Científicas y Técnicas, grant number PIP 11220110100312 to J.P. Torretta and Universidad de Buenos Aires, UBACyT 20020130200203BA and 20020170200252BA to J.P. Torretta. M. M. Gotelli, S. S. Aliscioni and J. P. Torretta are affiliated with Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires, Argentina.

This study was performed with permission of the Administración de Parque Nacionales (Regional NEA), and the Ministerio de Ecología y Recursos Naturales Renovables, province of Misiones.

Author information

Authors and Affiliations

Authors

Contributions

MG, SA and JPT contributed to the study conception and design. Data collection and analysis were performed by JPT. Morphological observations were made by PTK and SA. Flowers were processed for microscope observations and analyzed by SA, PTK and MG. The first draft of the manuscript was written by MG, SA and JPT; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Gotelli.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Dorota Kwiatkowska

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotelli, M., Aliscioni, S., Kuo, P.T. et al. Are the floral morphology and anatomy of Galphimia australis, an atypical neotropical Malpighiaceae, associated to a new pollination syndrome?. Protoplasma 260, 1047–1062 (2023). https://doi.org/10.1007/s00709-022-01829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-022-01829-z

Keywords

Navigation