Skip to main content

Advertisement

Log in

Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger (Zingiber officinale)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Heavy waterlogging and high temperatures occur frequently in North China, yet the effects of changing environments on photochemical reactions and carbon metabolism have not been described in ginger. To determine the impact of waterlogging and high temperature on ginger, in this study, treatment groups were established as follows: (a) well-watered at ambient temperature (28 °C/22 °C) (CK), (b) well-watered at moderate temperature (33 °C/27 °C) (MT), (c) well-watered at high temperature (38 °C/32 °C) (HT), (d) waterlogging at ambient temperature (CK-WL), (e) waterlogging at moderate temperature (MT-WL), and (f) waterlogging at high temperature (HT-WL) during the rhizome growth period. We analyzed the effect of different treatments on the photosynthetic performance of ginger. Here, our results showed that waterlogging and high temperature irreversibly decreased the photosynthetic pigment content, increased the ROS content of leaves, inhibited leaf carbon assimilation and limited PSII electron transport efficiency. In addition, waterlogging in isolation and high temperature in isolation affected photosynthesis to varying degrees. Taken together, photosynthesis was more sensitive to the combined stress than to the single stresses. The results of this research provide deep insights into the response mechanisms of crop photosynthesis to different water and temperature conditions and aid the development of scientific methods for mitigating plant damage over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahsan NLD, Lee SH, Kanga KY, Bahka JD, Choi MS, Lee IJ, Renaut JLB (2007) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant 131:555–570

    Article  CAS  PubMed  Google Scholar 

  • Ai XZ, Zhang ZX, Wang SH, Cui ZF (2000) The role of SOD in protecting ginger leaves from photoinhibition damage under high light stress. Acta Horticulturae Sinica 3:198–201

    Google Scholar 

  • An Y, Qi L, Wang L (2016) ALA pretreatment improves waterlogging tolerance of fig plants. PLoS ONE 11(1):e0147202

    Article  PubMed  PubMed Central  Google Scholar 

  • Angmo P, Phuntsog N, Namgail D, Chaurasia OP, Stobdan T (2021) Effect of shading and high temperature amplitude in greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (lycopersicum esculentum mill.). Physiol Mol Biol Plants 27(7):1539–1546

  • Arismendi MJ, Almada R, Pimentel P, Bastias A, Salvatierra A, Rojas P, Hinrichsen P, Pinto M, Genova AD, Travisany D, Maass A, Sagredo BM (2015) Transcriptome sequencing of Prunus sp. rootstocks roots to identify candidate genes involved in the response to root hypoxia. Tree Genet Genom 11(1):1–16

  • Bai T, Li C, Ma F, Feng F, Shu H (2010) Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil 327:95–105

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LA, van Dongen JT (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    Article  CAS  PubMed  Google Scholar 

  • Bertolde FZ, Almeida AAF, Pirovani CP, Gomes FP, Ahnert D, Baligar VC, Valle RR, (2012) Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 50(3):447–457

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98(4):1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Oliveira J, Martins-Miranda AS, Viégas RA, Silveira J (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 163(3):563–571

    Article  CAS  PubMed  Google Scholar 

  • Chastain DR, Snider JL, Choinski JS, Colins GD, Perry GD, Whitaker J, Grey TL, Sorensen RB, Van-Iersel M, Byrd SA (2016) Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. J Plant Physiol 199:18–28

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yang J, Zhang M, Strasser RJ, Qiang S (2016) Classification and characteristics of heat tolerance in Ageratina ad-enophora populations using fast chlorophyll a fluorescence rise OJIP. Environ Exp Bot 122:126–140

    Article  CAS  Google Scholar 

  • Chen YL, Wang HM, Hu W, Wang S, Wang Y, Snider JL, Zhou Z (2017) Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber. Plant Sci 256:196–207

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Sakai H, Yagi K, Hasegawa T (2010) Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of c and n by rice (oryza sativa l.). Agri Forest Meteorol 150(9):1174–1181

  • Collaku A, Harrison SA (2002) Losses in Wheat Due to Waterlogging. Crop Sci 42(2):444–450

    Article  Google Scholar 

  • Dąbrowski P, Kalaji MH, Baczewska AH, Pawluśkiewicz B, Mastalerczuk G, Borawska-Jarmułowicz B, Paunov M, Goltsev V (2017) Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. J Lumin 183:322–333

    Article  Google Scholar 

  • Gao JQ, Gao JJ, Zhang XW, Xu XL, Deng ZH, Yu FH (2015) Effects of waterlogging on carbon assimilate partitioning in the zoigê alpine wetlands revealed by (13)CO2 pulse labeling. Rep 5:9411

    CAS  Google Scholar 

  • Gay C, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284(2):217–220

    Article  CAS  PubMed  Google Scholar 

  • Goltsev V, Zaharieva I, Chernev P, Kouzmanova M, Kalaji HM, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SI, Strasser RJ (2012) Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim Biophys Acta 1817(8):1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Hendrix DL (1993) Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Ence 33(6):1306–1311

    CAS  Google Scholar 

  • Herzog M, Striker GG, Colmer TD, Pedersen O (2016) Mechanisms of waterlogging tolerance in wheat a review of root and shoot physiology. Plant Cell Environ 39(5):1068–1086

    Article  CAS  PubMed  Google Scholar 

  • He JX, Wang J, Liang HG (1995) Effects of water on photochemical function and protein metabolism of photosystem II in wheat leaves. Plant Physiol 93(4):771–777

    Article  CAS  Google Scholar 

  • Hikosaka K, Kato MC, Hirose T (2010) Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. Physiol Plant 121(4):699–708

    Article  Google Scholar 

  • Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J (2021) Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. The Crop Journal 10(2):478–489

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change: The physical science basis. http://www.ipcc.ch/publications_and_data/publications_and_data. Shtml. Accessed 20 Dec 2016

  • Jablonski PP, Anderson JW (1981) Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts. Plant Physiol 67(6):1239–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krieger-Liszkay Trebst (2006) Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the psii reaction centre. J Exp Bot 57(8)(-):1677–1684

  • Kuai J, Liu Z, Wang Y, Meng Y, Chen B, Zhao W, Zhou Z (2014) Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Sci 223:79–98

    Article  CAS  PubMed  Google Scholar 

  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 5:672–678

    Article  Google Scholar 

  • Li PM, Cheng LL, Gao HY, Jiang CD, Peng T (2009) Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol 166(15):1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xiao W, Li L, Li DM, Gao DS, Zhu CY (2017) Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiol Biochem 115:200–211

    Article  CAS  PubMed  Google Scholar 

  • Liu YF, Zhang GX, Qi MF, Li TL (2015) Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. J Plant Growth Regul 34(2):263–273

    Article  CAS  Google Scholar 

  • Medina V, Gilbert ME (2016) Physiological trade-offs of stomatal closure under high evaporative gradients in field grown soybean. Funct Plant Biol 43(1):40–51

    Article  Google Scholar 

  • Miyake C, Yokota A (2000) Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol 41(3):335–343

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767(6):414–421

    Article  CAS  PubMed  Google Scholar 

  • Pereira ES, Sampaio LS (2014) Tolerance to waterlogging in young Euterpe oleracea plants. Photosynthetica 52(2):186–192

    Article  Google Scholar 

  • Perez-Jimenez M, Hernandez-Munuera M, Pinero MC, Lopez-Ortega G, Del Amor FM (2017) Are commercial sweet cherry rootstocks adapted to climate change? Short-term waterlogging and CO2 effects on sweet cherry cv 'Burlat'. Plant Cell Environ 41(5):908–918

  • Pimentel P, Almada RD, Salvatierra A, Toro G, Arismendi MJ, Pino MT, Sagredo B, Pinto M (2014) Physiological and morphological responses of Prunus species with different degree of tolerance to long-term root hypoxia. Sci Hortic 180:14–23

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves - ScienceDirect. Plant Sci 161(4):765–771

    Article  CAS  Google Scholar 

  • Rauckman EJ, Rosen GM, Kitchell BB (1979) Superoxide radical as an intermediate in the oxidation of hydroxylamines by mixed function amine oxidase. Mol Pharmacol 15(1):131–137

    CAS  PubMed  Google Scholar 

  • Robison SM, Morita RY (2010) The effect of moderate temperature on the respiration and viability of vibrio marinus. J Basic Microbiol 6(3):181–187

    Google Scholar 

  • Sairam RK, Dharmar K, Chinnusamy V, Meena RC (2009) Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J Plant Physiol 166:602–616

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Steven J, Crafts-Brandner, (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):999–1014

    Article  Google Scholar 

  • Shao RX, Li LL, Zheng HF, Zhang JY, Yang SJ, Ye MA, Xin LF, Su XY, Ran WL, Mao J (2016) Effects of exogenous nitric oxide on photosynthesis of maize seedlings under drought stress. Scientia Agricultura Sinica 49(2):251–259

    CAS  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2014) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Planta 153:284–298

    Article  Google Scholar 

  • Shu H, Zhou Z, Xu N, Wang Y, Zheng M (2009) Sucrose metabolism in cotton(Gossypium hirsutum L.) fibre under low temperature during fibre development. Eur J Agron 31:61–68

    Article  CAS  Google Scholar 

  • Slattery RA, Ort DR (2019) Carbon assimilation in crops at high temperatures. Plant, Cell Environ 42(10):2750–2758

    Article  CAS  PubMed  Google Scholar 

  • Sloan JL, Islam MA, Jacobs DF (2016) Reduced translocation of current photosynthate precedes changes in gas exchange for Quercus rubra seedlings under flooding stress. Tree Physiol 36(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 1:31–45

    Article  Google Scholar 

  • Sperling O, Shapira O, Tripler E, Schwartz A, Lazarovitch N (2014) A model for computing date palm water requirements as affected by salinity. Irrigation Sci 0(14):0433e0435

  • Srivastava J, Gangey SJ, Shahi JP (2007) Waterlogging resistance in maize in relation to growth, mineral compositions and some biochemical parameters. Ind J Plant Physiol 1:28–33

    Google Scholar 

  • Strasser RJ (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll A Fluorescence A Signature of Photosynthesis 19:321–362

    Article  CAS  Google Scholar 

  • Striker GG, Colmer TD (2017) Flooding tolerance of forage legumes. J Exp Bot 68(8):1851–1872

    CAS  PubMed  Google Scholar 

  • Tian MS, Woolf AB, Bowen JH, Ferguson IB (1996) Changes in color and chlorophyll f luorescence of broccoli f lorets following hot water treatment. J Am Soc Hortic Sci 121:310–313

    Article  Google Scholar 

  • Tošović J, Marković S, Dimitrić MJM, Mojović M, Milenković D (2017) Antioxidative mechanisms in chlorogenic acid. Food Chem 237:390–398

    Article  PubMed  Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3):147–150

    Article  PubMed  Google Scholar 

  • Wang Q, Zhang M, Wang S, Ma Q, Sun M (2014) Changes in temperature extremes in the yangtze river basin, 1962–2011. J Geog Sci 24(1):59–75

    Article  Google Scholar 

  • Waring EF, Maricle BR (2012) Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environ Exp Bot 77:77–86

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll f luorescence. BBA-Bioenergetics 894:198–208

    Article  CAS  Google Scholar 

  • Wiberley-Bradford AE, James SB, Jiang JM, Bethke PC (2014) Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Res Notes 7(1):1–19

    Article  Google Scholar 

  • Wu XL, Tang YL, Li CS, Wu C, Huang G (2015) Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Prod Sci 3:284–294

    Article  Google Scholar 

  • Xu K, Zou QI, Zheng GS (2002) Photorespiration and xanthophyll cycle in adaptation to strong light in ginger leaves. Acta Horticulturae Sinica 29(1):47–51

    Google Scholar 

  • Yan K, Chen P, Shao HB, Zhao SJ (2013) Characterization of photosynthetic electron transport chain in bioenergy crop Jerusalem artichoke (Helianthus tuberosus L.) under heat stress for sustainable cultivation. Ind Crop Prod 50:809–815

    Article  CAS  Google Scholar 

  • Yang JY, Chen ZF, Yan CR, Ju H, Mei XR, Liu Q, Xu JW (2013) Spatio-temporal characteristics and jump features of air temperature in Huang-Huai-Hai plain during recent 50 years. Chin J Agrometeorol 34(01):1–7

    Google Scholar 

  • Yang Y, Yu L, Wang L, Guo S (2015) Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under nacl stress. J Plant Physiol 186–187:50–58

    Article  PubMed  Google Scholar 

  • Younis ME, El-Shahaby OA, Nemat Alla MM, Ei-Bastawisy ZM (2003) Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. Agronomie 32(4):277–285

    Article  Google Scholar 

  • Zhang R, Yue Z, Chen X, Wang Y, Zhou Y, Xu W (2021) Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings. Plant Growth Regulation. https://doi.org/10.1007/s10725-021-00705-9

  • Zhang ZS, Liu MJ, Scheibe R, Selinski J, Zhang LT, Yang C, Gao HY (2017) Contribution of the alternative respiratory pathway to PSII photoprotection in C3 and C4 plants. Mol Plant 10:131–142

    Article  CAS  PubMed  Google Scholar 

  • Zhou CP, Bai T, Wang Y, Wu T, Zhang XZ (2017) Morphological and enzymatic responses to waterlogging inthree Prunus species. Sci Hortic 221:62–67

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Agricultural Fine Variety Project in Shandong Province of China (Grant No. 2020LZGC006), Taishan Industrial Experts Programme, China (Grant No. tscy20190105), National Natural Science Foundation of China (Grant No. 31972399).

Author information

Authors and Affiliations

Authors

Contributions

Shangjia Liu collected the sample and conducted most of the experiments. Bili Cao and Yao Lv analyzed the transcriptomic and metabolic data. Zijing Chen and Kun Xu wrote the manuscript.

Corresponding authors

Correspondence to Zijing Chen or Kun Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Communicated by Handling Editor: Bhumi Nath Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, B., Cao, B. et al. Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger (Zingiber officinale). Protoplasma 260, 405–418 (2023). https://doi.org/10.1007/s00709-022-01783-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-022-01783-w

Keywords

Navigation