Skip to main content
Log in

Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Trehalose, one of the most chemically stable sugars, can effectively improve the tolerance of various plants against abiotic stress by protecting and stabilizing protein and cell membranes. However, the signaling pathway in trehalose biosynthesis triggered by abiotic stresses is still unclear. In the study, it can be shown that exogenous trehalose can alleviate the inhibitory effect of osmotic stress on cell growth, suppress extracellular alkalization, ROS burst, and maintain the integrity of the microtubular cytoskeleton. Trehalose-6-phosphate synthase (TPS) is the key limiting enzyme for trehalose synthesis and is encoded by 7 ClTPS genes, located in 7 different chromosomes of the watermelon genome. Expression analysis by qRT-PCR indicated that osmotic stress could upregulate the expression of all the family members of ClTPS and promote the accumulation of trehalose in watermelon cells accordingly. Exogenous methyl jasmonate (MeJA), ethephon (ETH), abscisic acid (ABA), or salicylic acid (SA) induced trehalose accumulation, with MeJA being the most effective treatment. When fluridone (FL), an ABA biosynthesis inhibitor, was pre-perfused into the cells before osmotic stress, trehalose accumulation and packed cell volume were suppressed significantly, whereas inhibition of ethylene biosynthesis could even restore cell growth. Moreover, inhibition of trehalose hydrolysis could also increase the tolerance against osmotic stress. This study shows that trehalose biosynthesis is phytohormone-dependent and the hydrolysis of trehalose is involved in osmotic tolerance regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci 197:258–271

    Article  CAS  Google Scholar 

  • Almeida AM, Cardoso LA, Santos DM, Torné JM, Fevereiro PS (2007) Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Biol Plant 43:167–177

    Article  CAS  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Dijck PV, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci 3:1–20

    Article  CAS  Google Scholar 

  • Becker A, Schlöder P, Steele JE, Wegener G (1996) The regulation of trehalose metabolism in insects. Experientia 52:433–439

    Article  CAS  PubMed  Google Scholar 

  • Birch GG (1963) Trehalose. In: Wolfrom, M. L., Tyson, R. S. New York: Academic. Adv Carbohydr Chem 18:201–225

  • Blázquez MA, Santos E, Flores CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–689

    Article  PubMed  Google Scholar 

  • Boscaiu M, Bautista I, Donat P, Lidon A, Llinares J, Lull C (2011) Plant responses to abiotic stress. Curr Opin Biotechnol 22:S130–S130

    Article  Google Scholar 

  • Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44:314–333

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Heene E, Qiao F, Nick P (2011) The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. Plos One 6:e26405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausube FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–5991

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  CAS  PubMed  Google Scholar 

  • Dane F, Liu JR (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Ev 54:1255–1265

    Article  CAS  Google Scholar 

  • Davies DD (1986) The fine control of cytosolic pH. Plant Physiol 67:702–706

    Article  CAS  Google Scholar 

  • Dong CJ, Shang QM (2013) Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus). Planta 238:35–49

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1974) The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4:307–316

    Article  CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:408–417

    Article  CAS  Google Scholar 

  • Figueroa CM, Lunn JE (2016) A tale of two Sugars: trehalose 6-phosphate and sucrose. Plant Physiol 172:7–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fosket DE, Morejohn LC (1992) Structural and functional organization of tubulin. Annu Rev Physiol 43:201–240

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjaka A, Sanseverino W, Bourgeois M, Mir G, González MV et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80:5–22

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, Dun KV (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  CAS  PubMed  Google Scholar 

  • Grunewald W, Cannoot B, FrimL J, Gheysen G (2009) Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PloS Pathog 5:e1000266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan X, Buchholz G, Nick P (2015) Tubulin marker line of grapevine suspension cells as a tool to follow early stress responses. J Plant Physiol 176:118–128

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salese J, Lucas WJ, Zhang H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Han B, Fu L, Zhang D, He X, Chen Q, Peng M et al (2016) Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in Cassava. Int J Mol Sci 17:1077–1095

    Article  PubMed Central  CAS  Google Scholar 

  • Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH et al (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47:211–223

    Article  CAS  PubMed  Google Scholar 

  • Hincha DK, Zuther E, Hellwege EM, Heyer AG (2002) Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying. Glycobiology 12:103–110

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonates signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P et al (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B et al (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2001) Altered patterns of tubulin polymerization in dividing leaf cells of Chlorophyton comosum after a hyperosmotic treatment. New Phytol 149:193–207

    Article  CAS  PubMed  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. Plant Cell Physi 43:911–922

    Article  CAS  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine H, Slade L (1992) Another view of trehalose for drying and stabilizing biological materials. Bio Pharm 5:36–40

    CAS  Google Scholar 

  • Leyman B, Dijck PV, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513. https://doi.org/10.1016/S1360-1385(01)02125-2

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Zhu LP (2015) Hydrogen sulfide donor sodium hydrosulfide-induced accumulation of betaine is involved in the acquisition of heat tolerance in maize seedlings. Braz J Bot 38:31–38

    Article  CAS  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li P, Sun L, Wang Y, Ji K, Sun Y et al (2012) Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. J Plant Physiol 169:78–85

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Qiao F, Ismail A, Chang X, Nick P (2013) The plant cytoskeleton controls regulatory volume increase. Bba-Biomembranes 1828:2111–2120

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 2008(63):378–384

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. A b b 444:139–158

    CAS  Google Scholar 

  • Nick P (2008) Microtubules as sensors for abiotic stimuli. Plant Monogr 143:175–203

    Article  CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous pro-line and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  PubMed  Google Scholar 

  • Ojalvo I, Rokem JS, Navon G (1987) PNMR study of elicitor treated Phaseolus vulgaris cell suspension cultures. Physiol Plant 85:716–719

    Article  CAS  Google Scholar 

  • Osuna D, Usadel B, Morcuende R, Gibon Y, Bläsing OE, Höhne M et al (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J 49:463–491

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). Plant Cell Rep 36:759–772

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Pellny, T. K. (2003). Trehalose metabolism in plants: the impact of expressing E.coli genes for the trehalose pathway. University of Nottingham.

  • Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8:355–357

    Article  CAS  PubMed  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  Google Scholar 

  • Qiao F, Chang XL, Nick P (2010) The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine. J Exp Bot 61:4021–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon M, Smet ID, Vandesteene L, Naudts M, Leyman B, Dijck PV et al (2009) Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ 32:1015–1032

    Article  CAS  PubMed  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DHA et al (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40:871–898

    Article  CAS  PubMed  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero C, Bellés JM, Vayá JL, Serrano R, Culiañez-Maciá FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–330

    Article  CAS  PubMed  Google Scholar 

  • Roser B, Colaco C (1993) A sweeter way to fresh food. New Sci 138:25–28

    Google Scholar 

  • Sadak MS (2016) Mitigation of drought stress on fenugreek plant by foliar application of trehalose. Int J Chem Tech Res 9:147–155

    CAS  Google Scholar 

  • Sah SK, Reddy KR, Jiaxu L (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 5:1–26

    CAS  Google Scholar 

  • Sakano K (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant Cell Physi 39:467–473

    Article  CAS  Google Scholar 

  • Sakno K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:41–44

    Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Hamayun M, Kang SM, Lee IJ (2015) Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiol Biochem 96:406–416

    Article  CAS  PubMed  Google Scholar 

  • Shi LC, Wang BC, Gong W, Zhang YG, Zhu LQ, Yang XY (2011) Actin filaments and microtubules of Arabidopsis suspension cells show different responses to changing turgor pressure. Biochem Biophys Res Commun 405:632–637

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechno 16:460–468

    Article  CAS  Google Scholar 

  • Thalhammer A, Hincha DK (2014) A mechanistic model of COR15 protein function in plant freezing tolerance: integration of structural and functional characteristics. Plant Signal Behav 9(12):e977722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes. Annu Rev Biophys Biomol Struct 22:67–971

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijken AJ, Schluepmann H, Smeekens SC (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135:969–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandesteene L, Ramon M, Roy KL, Dijck PV, Rolland F (2010) A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant 3:406–419

    Article  CAS  PubMed  Google Scholar 

  • Vandesteene L, Lopez-Galvis L, Vanneste K, Feil R, Maere S, Lammens W et al (2012) Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol 160:884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boller T, Wiemken A, Aeschbacher RA et al (2001) Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot 52:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Hu HT, Goertzen LR, McElroy JS, Dane F (2014) Analysis of the Citrullus colocynthis transcriptome during water deficit stress. Plos One 9:e104657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang NN, Shih MC, Li N (2005) GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920

    Article  CAS  PubMed  Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Sun M, Jiang X, Sun H, Dang X, Cong H, Qiao F (2018) Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front Plant Sci 9:1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang DL, YAo, J., Mei, C. S., Tong, X. H., Zeng, L. J., and Li, Q., et al (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 109:e1192–e1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhao X, Zhu H, Paul MJ, Zu Y, Tang Z (2014a) Exogenous trehalose largely alleviates ionic imbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci 5:570

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang R, Yang T, Zhang H, Qi Y, Xing Y, Zhang N et al (2014b) Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Bioch 77:23–34

    Article  CAS  Google Scholar 

  • Zang BS, Li HW, Li WJ, Deng XW, Wang XP (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522

    Article  CAS  PubMed  Google Scholar 

  • Zhou ML, Ma JT, Pang JF, Zhang ZL, Tang YX, Wu YM (2010) Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. Afr J Biotechnol 9:9255–9269

    CAS  Google Scholar 

  • Zhou ML, Zhang Q, Sun ZM, Chen LH, Liu BX, Zhang KX et al (2014) Trehalose metabolism-related genes in Maize. J Plant Growth Regul 33:256–271

    Article  CAS  Google Scholar 

  • Zhou XY, Naguro I, Ichijo H, Watanabe K (2016) Mitogen-activated protein kinases as key players in osmotic stress signaling. BBA-General Subjects 1860:2037–2052

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZQ, An FY, Feng Y, Li PP, Xue L, A. M., et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 31760595), Hainan Provincial Natural Science Foundation of China (No. 321RC473), and Key Technologies Program of Haikou (No. 2017045). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefei Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Néstor Carrillo

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 185 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Li, M., Sun, M. et al. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells. Protoplasma 259, 1351–1369 (2022). https://doi.org/10.1007/s00709-021-01715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01715-0

Keywords

Navigation