Skip to main content
Log in

Chromosomal view of Lippia alba, a tropical polyploid complex under genome stabilization process

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Lippia alba is a phenotypically variable tropical shrub thought to comprise a young autopolyploid complex. Chromosome numbers in L. alba include 2n = 30, 38, 45, 60, and 90. High levels of chemical and phenotypic variation associated with economic and medicinal importance were reported. However, the genetic background including chromosome composition remains under-explored. Furthermore, the occurrence of at least four ploidal levels in L. alba and the lack of data for polyploid plants in tropical areas also merit further study of L. alba. Here we assessed the chromosome composition using two new satellite repeats (CL98 and CL66) applied as FISH probes to mitotic chromosomes, and we proposed to calculate the degree of homozygosis for CL66 satDNA (named as index h) and to associate it to meiotic instability. The CL98 mapping showed few variations in both number of signals and position. However, the levels of structural homozygosity for a satellite repeat CL66 were very variable. The numbers of CL66-bearing-chromosomes were under-represented in tetraploids relative to diploids implying that CL66 arrays have been lost in tetraploid lineages as a result of increased meiotic instability. High percentage of irregularities was observed in meiotic cells, especially in polyploids. L. alba complex comprised a mixture of homomorphic and heteromorphic chromosomes. Overall, the polyploid complex presents features typical of both young and older stable polyploids. It seems that L. alba genome is still in the process of stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, Koblížková A, Macas J, Lysak MA (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 107:255–268

    PubMed  Google Scholar 

  • Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA (2016) On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:391–398

    PubMed  Google Scholar 

  • Belyayev A, Paštová L, Fehrer J, Josefiová J, Chrtek J, Mráz P (2018) Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data. Plant Syst Evol 304:387–396

    CAS  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosom Res 23:463–477

    CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina Sequence Data. BMC Bioinform 30:2114–2120

    CAS  Google Scholar 

  • Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, Chamala S, Leitch AR, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2012) Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 99:372–382

    PubMed  Google Scholar 

  • Campos JMS, Sousa SM, Silva PS, Pinheiro LC, Sampaio F, Viccini LF (2011) Chromosome numbers and DNA C values in the genus Lippia (Verbenaceae). Plant Syst Evol 291:133–140

    Google Scholar 

  • Carvalho CR, Saraiva LS (1993) A new heterochromatin banding pattern revealed by modified HKG banding technique for maize chromosomes. Heredity 70:515–519

    Google Scholar 

  • Čertner M, Fenclova E, Kúr P et al (2017) Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Ann Bot 120:303–315

    PubMed  PubMed Central  Google Scholar 

  • Chester M, Lipman LJ, Gallagher JP, Soltis SP, Soltis DE (2013) An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus (Asteraceae). Chromosom Res 21:75–85

    CAS  Google Scholar 

  • Dai X, Li X, Huang Y, Liu X (2020) The speciation and adaptation of the polyploids: a case study of the Chinese Isoetes L. diploid-polyploid complex. BMC Evol Biol 20:118

    PubMed  PubMed Central  Google Scholar 

  • Dodsworth S, Chase MW, Leitch AR (2016) Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc 180:1–5

    Google Scholar 

  • Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Google Scholar 

  • Doyle JJ, Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci 180:1–52

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duchoslav M, Safárová L, Krahulec F (2010) Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105:719–735

    PubMed  PubMed Central  Google Scholar 

  • Emadzade K, Jang TS, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H (2014) Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot 114:1597–1608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeta RT, Pires J (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    CAS  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddon JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science 220:1049–1051

    CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2015) Satellite DNA in Plants: more than just rubbish. Cytogenet Genome Res 146:153–170

    CAS  PubMed  Google Scholar 

  • Hegarty M, Coate J, Sherman-Broyles S, Abbott R, Hiscock S, Doyle J (2013) Lessons from natural and artificial polyploids in higher plants. Cytogenet Genome Res 140:204–225

    CAS  PubMed  Google Scholar 

  • Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T (2015) Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosom Res 23:791–806

    CAS  Google Scholar 

  • Henebelle T, Sahpaz S, Joseph H, Bailleul F (2008) Ethnopharmacology of Lippia alba. J Ethnopharmacol 116:211–222

    Google Scholar 

  • Heslop-Harrison JS, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45:115–120

    CAS  PubMed  Google Scholar 

  • http://www.splink.org.br. Accessed 16 September 2020

  • Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701

    Google Scholar 

  • Jang T-S, Parker JS, Emadzade K, Temsch EM, Leitch AR, Weiss-Schneeweiss H (2018) Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the Monocot Prospero. Front Plant Sci 9:433

    PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    CAS  PubMed  Google Scholar 

  • Joachimiak AJ, Hasterok R, Sliwinska E, Musiał K, Grabowska-Joachimiak A (2018) FISH-aimed karyotype analysis in Aconitum subgen. Aconitum reveals excessive rDNA sites in tetraploid taxa. Protoplasma 255:1363–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Julião SA, Ribeiro CV, Lopes JML, Matos EM, Reis AC, Peixoto PHP, Machado MA, Azevedo ALS, Grazul RM, Campos JMS, Viccini LF (2020) Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Front Plant Sci 11:292. https://doi.org/10.3389/fpls.2020.00292

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato A, Lamb JC, Albert PS, Danilova T, Han F, Gao Z, Findley S, Birchler JA (2011) Chromosome painting for plant biotechnology. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols. Humana Press, Totowa, pp 67–96

    Google Scholar 

  • Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC (2017) Mixedploidy species: progress and opportunities in polyploid research. Trends Plant Sci 22:1041–1055

    PubMed  Google Scholar 

  • Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160

    CAS  PubMed  Google Scholar 

  • Krejčíková J, Sudová R, Oberlander K, Dreyer L, Suda J (2013) The spatio-ecological segregation of different cytotypes of Oxalis obtusa (Oxalidaceae) in contact zones. S Afr J Bot 88:62–68

    Google Scholar 

  • Kubis S, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82:45–55

    CAS  Google Scholar 

  • Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS (2018) Impact of whole-genome duplication events on diversification rates in angiosperms. Am J Bot 105:1–16

    Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Bot J Linn Soc 82:651–663

    Google Scholar 

  • Levin DA (2021) Propagule pressure and the establishment of emergent polyploid populations. Ann Bot 127:1–5

    CAS  PubMed  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, Mccarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907–919

    CAS  PubMed  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Fulnecek J, Leitch AR (2005) Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploid Nicotiana rustica compared with diploid progenitors N. paniculata and N. undulata. Cytogenet Genome Res 109:298–309

    CAS  PubMed  Google Scholar 

  • Lopes JML, Carvalho HH, Zorzatto C, Azevedo AL, Machado MA, Salimena FRG et al (2020) Genetic relationships and polyploid origins in the Lippia alba complex. Am J Bot 107:1–11

    Google Scholar 

  • Mandáková T, Lysak MA (2018) Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Plant Biol 42:55–65

    PubMed  Google Scholar 

  • Mandáková T, Mummenhoff K, Al-Shehbaz IA, Mucina L, Mühlhausen A, Lysak MA (2012) Whole-genome triplication and species radiation in the southern African tribe Heliophileae (Brassicaceae). Taxon 61:989–1000

    Google Scholar 

  • McAllister C, Blaine R, Kron P, Bennett B, Garrett H, Kidson J, Matzenbacher B, Glotzbach A, Miller AJ (2015) Environmental correlates of cytotype distribution in Andropogon gerardii (Poaceae). Am J Bot 102:92–102

    PubMed  Google Scholar 

  • Norrmann GA, Keeler KH (2003) Cytotypes of Andropogon gerardii Vitman (Poaceae): fertility and reproduction of aneuploids. Bot J Linn Soc 141:95–103

    Google Scholar 

  • Novak P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378

    Google Scholar 

  • Padilla-García N, Rojas-Andrés BM, López-González N, Castro M, Castro S, Loureiro J, Albach DC, Machon N, Martínez-Ortega MM (2018) The challenge of species delimitation in the diploid-polyploid complex Veronica subsection Pentasepalae. Mol Phylogenet Evol 119:196–209

    PubMed  Google Scholar 

  • Pezer Ž, Brajković J, Feliciello I, Ugarković Ð (2012) Satellite DNA-mediated effects on genome regulation. In: Garrido-Ramos MA eds. Repetitive DNA. Genome Dyn 7: 153–169

  • Pierre PMO, Sousa SM, Davide LC, Machado MA, Viccini LF (2011) Karyotype analysis, DNA content and molecular screening in Lippia alba (Verbenaceae). An Acad Bras Ciênc 83:993–1005

    CAS  PubMed  Google Scholar 

  • Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin. Gene 409:72–82

    CAS  PubMed  Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. In: Garrido-Ramos MA eds. Repetitive DNA. Genome Dyn 7: 126–152

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst 29:467–501

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Evol Syst 33:589–639

    Google Scholar 

  • Reis AC, Sousa SM, Vale AA, Pierre PMO, Franco AL, Campos JMS, Vieira RF, Viccini LF (2014) Lippia alba (Verbenaceae): a new tropical autopolyploid complex? Am J Bot 101:1002–1012

    PubMed  Google Scholar 

  • Reis AC, Sousa SM, Viccini LF (2016) High frequency of cytomixis observed at zygotene in tetraploid Lippia alba. Plant Syst Evol 302:121–127

    Google Scholar 

  • Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I (2019) The global biogeography of polyploid plants. Nat Ecol Evol 3:265–273

    PubMed  Google Scholar 

  • Rojas-Andrés BM, Padilla-García N, de Pedro M et al (2019) Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection Pentasepalae at a broad scale. Ann Bot 125:471–484

    PubMed Central  Google Scholar 

  • Rosato M, Galián JA, Rosselló JA (2012) Amplification, contraction and genomic spread of a satellite DNA family (E180) in Medicago (Fabaceae) and allied genera. Ann Bot 109:773–782

    CAS  PubMed  Google Scholar 

  • Sanders RW (2001) The genera of Verbenaceae in the southeastern United States. Harv Pap Bot 5:303–358

    Google Scholar 

  • Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, de Storme N, Hörandl E (2017) Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst Evol 303:1093–1108

    PubMed  PubMed Central  Google Scholar 

  • Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26

    CAS  PubMed  Google Scholar 

  • Simonin KA, Roddy AB (2018) Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol 16:e2003706

    PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Visger CJ, Marchant DB, Soltis PS (2016) Polyploidy: pitfalls and paths to a paradigm. Am J Bot 103:1146–1166

    PubMed  Google Scholar 

  • Sousa SM, Silva PS, Torres GA, Viccini LF (2009) Chromosome banding and essential oils composition of Brazilian accessions of Lippia alba (Verbenaceae). Biologia 64:711–715

    CAS  Google Scholar 

  • Spoelhof JP, Chester M, Rodriguez R, Geraci B, Heo K, Mavrodiev E, Soltis PS, Soltis DE (2017) Karyotypic variation and pollen stainability in resynthesized allopolyploids Tragopogon miscellus and T. mirus. Am J Bot 104:1484–1492

    CAS  PubMed  Google Scholar 

  • Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96

    PubMed  Google Scholar 

  • Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, Bryan GJ, Novák P, Macas J, Jiang J (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. G3-Genes Genom Genet 1:85–92

    CAS  Google Scholar 

  • Torres E, Lopez N (2007) Phenotypic plasticity of Lippia alba and Lippia origanoides (Verbenaceae) in response to availability of light. Acta Biolo Colomb 12:91–102

    Google Scholar 

  • Ugarković D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    PubMed  PubMed Central  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    PubMed  Google Scholar 

  • Venâncio DFA, Viccini LF, Luizi-Ponzo AP, Prezoto F (2016) Flower-visiting insects and phenology of Lippia alba (Lamiales: Verbenaceae): floral color changes and environmental conditions as cues for pollinators. Environ Entomol 45:685–693

    PubMed  Google Scholar 

  • Viccini LF, Pierre PMO, Praça MM, Souza da Costa DC, Romanel-Costa, Souza SM, Pereira-Peixoto PH, Salimena FR (2006) Chromossome number in the genus Lippia (Verbenaceae). Plant Syst Evol 256:171–178

    Google Scholar 

  • Viccini LF, Silveira RS, Do Vale AA, Campos JMS, Reis AC, Oliveira MS, Campos VR, Carpanez AG, Grazul RM (2014) Citral and linalool content has been correlated to DNA content in Lippia alba (Mill.) N.E. Brown (Verbenaceae). Ind Crop Prod 59:14–19

    CAS  Google Scholar 

  • Wang J, Qin J, Sun P, Ma X, Yu J, Li Y, Sun S, Lei T, Meng F, Wei C, Li X, Guo H, Liu X, Xia R, Wang L, Ge W, Song X, Zhang L, Guo D, Wang J, Bao S, Jiang S, Feng Y, Li X, Paterson AH, Wang X (2019) Polyploidy index and its implications for the evolution of polyploids. Front Genet 10:807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Feng Y, Liu R, Duo Q (2017) Isolation and characterization of chromosomal markers in Poa pratensis. Mol Cytogenet 10:1–9

    Google Scholar 

  • Zhao X, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM, Wendel JF, Paterson AW (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8:479–492

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CNPq (432412/2016-6 and 313740/2017-8), FAPEMIG, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyderson Facio Viccini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Sergey Mursalimov

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

Circular graph layouts of CL98 (A) and CL66 (B) clusters. (PNG 104 kb)

High resolution image (TIF 1838 kb)

Fig. S2

representative meiocytes in different meiosis stages. On the left, DAPI fluorochrome staining and on the right, CL66 probing stained with texas red fluorochrome. a) haploid microspore with 15 chromosomes and five CL66 sites (2x, BGEN-29); b) cytomixis process between meiocytes with unequal distribution of CL 66 sites (4x, BGEN-92); c) prophase I with pairing errs, multivalents (4x, BGEN-03); d) metaphase I with chromosome losses (3x, BGEN-01); e) telophase II with lost chromosomes and unequal segregation of CL 66 sites (4x, BGEN-61); f) triad with unbalanced CL 66 sites (3x, BGEN-59); g-h) polyad with unequal distribution of chromosomes and CL 66 sites at the final of the division (6x, BGEN-42; 4x BGEN-92, respectively). Bar = 5 μm. (PNG 5855 kb)

High resolution image (TIF 70866 kb)

Fig. S3

Representative karyograms of Lippia alba (2n = 2x = 30) showing ten CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 511 kb)

High resolution image (TIF 989 kb)

Fig. S4

Representative karyograms of Lippia alba (2n = 2x = 30) showing 11 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 326 kb)

High resolution image (TIF 701 kb)

Fig. S5

Representative karyograms of Lippia alba (2n = 2x = 30) showing 12 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 287 kb)

High resolution image (TIF 642 kb)

Fig. S6

Representatives karyograms of Lippia alba (2n = 2x = 30) showing 13, 14 and15 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 427 kb)

High resolution image (TIF 820 kb)

Fig. S7

Representative karyograms of Lippia alba (2n = 2x = 30) showing 16 and18 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 394 kb)

High resolution image (TIF 800 kb)

Fig. S8

Representative karyograms of Lippia alba (2n = 3x = 45) showing 16, and 21CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 566 kb)

High resolution image (TIF 1005 kb)

Fig. S9

Representative karyograms of Lippia alba (2n = 3x = 45) showing 23 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 403 kb)

High resolution image (TIF 797 kb)

Fig. S10

Representative karyograms of Lippia alba (2n = 4x = 60) showing ten CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 281 kb)

High resolution image (TIF 632 kb)

Fig. S11

Representative karyograms of Lippia alba (2n = 4x = 60) showing 18 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 484 kb)

High resolution image (TIF 869 kb)

Fig. S12

Representative karyograms of Lippia alba (2n = 4x = 60) showing 19 and 20 CL66-bearing chromosomes (red signals) and the proportion of homomorphic pairs (h-index) for each accession assessed. (PNG 451 kb)

High resolution image (TIF 815 kb)

Fig. S13

Representative karyograms of Lippia alba (2n = 38) showing 13 and 18 CL66-bearing chromosomes and L. alba hexaploid (2n = 6x = 90) showing 20 CL66-bearing chromosomes (red signals). The proportion of homomorphic pairs (h-index) was calculated for the hexaploid accession. (PNG 429 kb)

High resolution image (TIF 813 kb)

Fig. S14

Variation of interstitial-CL66 site among Lippia alba accessions. Differences in number of sites, location and signal size/intensity. (PNG 470 kb)

High resolution image (TIF 696 kb)

Table S1

Collection information for 73 voucher specimens collected in five Brazilian geographic regions. Each voucher number corresponds to specimens in the Universidade Federal de Juiz de Fora, Herbarium CESJ, Brazil (DOCX 67 kb)

Table S2

Meiotic behaviour in 60 accessions of Lippia alba. (DOCX 100 kb)

Table S3

Pollen viability in 60 diploid accessions of Lippia alba. Fluorescein diacetate (FDA) assay. (DOCX 51 kb)

Table S4

Data of Lippia alba seedlings emerged from diploid, triploid and tetraploid mother plants. (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, A.C., Chester, M., de Sousa, S.M. et al. Chromosomal view of Lippia alba, a tropical polyploid complex under genome stabilization process. Protoplasma 259, 33–46 (2022). https://doi.org/10.1007/s00709-021-01636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01636-y

Keywords

Navigation