Skip to main content
Log in

Plastid role in phytomelanin synthesis in Piptocarpha axillaris (Less.) Baker stems (Asteraceae, Vernonieae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Phytomelanin is a brown to black pigment found in plant tissues, mainly in Asparagales and Asteraceae species. However, few studies deal with the processes of its synthesis, and there are still many questions to be answered regarding the organelles involved in this process and their functions, especially in vegetative organs. In a previous study with stems and leaves of 77 Vernonieae (Asteraceae) species, phytomelanin was demonstrated to always be associated with sclereids, which suggests the involvement of these cells in the pigment synthesis. Thus, we selected another species of tribe Vernonieae, Piptocarpha axillaris (Less.) Baker, which produces abundant phytomelanin secretion in stem tissues, to investigate which cells and organelles are involved in the synthesis and release of this pigment, as well as its distribution in the tissues. To achieve this goal, stems in different developmental phases were analyzed under light and transmission electron microscopy. Anatomical analysis showed that the polymerization of phytomelanin in P. axillaris starts at the second stem node, in the pith region, and occurs simultaneously with sclereid differentiation. The plastids of cells that will differentiate into sclereids actively participate in the phenolic material synthesis, following the “tannosome” and the “pearl necklace” models, giving rise to the main precursor of phytomelanin, which is then polymerized in the intercellular spaces during the sclerification process of sclereids. In stems with an established secondary structure, the pigment can be observed more frequently in the cortex, pericycle, primary phloem, secondary phloem, and pith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asad M, Brahim M, Ziegler-Devin I, Boussetta N, Brosse N (2017) Chemical characterization of non-saccharidic and saccharidic components of rapeseed hulls and sunflower shells. Bioresources 12:3143–3153

    Article  CAS  Google Scholar 

  • Baldwin BG (2009) Heliantheae alliance. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, pp 689–711

    Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant P 57:101–110

    Article  CAS  Google Scholar 

  • Bremer K (1995) Asteraceae: cladistics and classification. Timber Press, Portland, pp176-178

  • Brillouet JM, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil JL, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112:1003–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brillouet JM (2014) Plasticity of the tannosome ontogenesis in the Tracheophyta. J Plant Sci 2:317–323

    Google Scholar 

  • Brillouet JM (2015) On the role of chloroplasts in the polymerization of tannins in Tracheophyta: a monograph. Am J Plant Sci 6:1401–1409

    Article  CAS  Google Scholar 

  • Bukatsch F (1972) Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 6:255

    Google Scholar 

  • Carlson EC, Knowles PF, Dillb JE (1972) Sunflower varietal resistance to sunflower moth larvae. Calif Agr 26:11–13

    CAS  Google Scholar 

  • De-Paula OC, Marzinek J, Oliveira DMT, Machado SR (2013) The role of fibres and the hypodermis in Compositae melanin secretion. Micron 44:312–316

    Article  CAS  PubMed  Google Scholar 

  • Driouich A, Faye L, Staehelin A (1993) The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem Sci 18:210–214

    Article  CAS  PubMed  Google Scholar 

  • Fritz E, Saukel J (2011) Secretory structures of subterranean organs of some species of the Cardueae and their diagnostic value. Acta Biol Crac Ser Bot 53:62–72

    Google Scholar 

  • Heubl GR, Bauer R, Wagner H (1988) Morphologische und anatomishe studien on Echinacea purpurea, E. angustifolia, E. pallida und Parthenium integrifolium. Sci Pharm 56:145–160

    Google Scholar 

  • Huber H (1969) Die Samenmerkmale und Verwandtschaftsverhältnisse der Liliiflorae. Mitt Bot Staatssamml 8:219–538

    Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenbo G, Schnitzler JP (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    Article  CAS  Google Scholar 

  • Jeffrey C (2009) Evolution of Compositae flowers. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics. Evolution and Biogeography of Compositae. IAPT, Vienna, pp 131–138

    Google Scholar 

  • Johansen D (1940) Plant microtechnique. McGraw-Hill Book Co, Inc, New York, 523p

    Google Scholar 

  • Keeley SC, Robinson H (2009) Vernonieae. In: Funk VA, Susana A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of Compositae. IAPT, Viena, pp 439–470

    Google Scholar 

  • Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Mol Biol 5:1084–1090

    Article  CAS  Google Scholar 

  • Knowles PE (1978) Morphology and anatomy. In: Carter JF (ed) Sunflower Science and Technology. ASA, CSSA, SSSA, Inc, Madison, pp 55–87

    Google Scholar 

  • Lusa MG, Loeuille BFP, Appezzato-da-Glória B (2018) First record of phytomelanin in aerial vegetative organs and its evolutionary implications in Lychnophorinae (Vernonieae: Asteraceae). Perspect Plant Ecol Syst 33:18–33

    Article  Google Scholar 

  • Mistríková I, Vaverková S (2007) Morphology and anatomy of Echinacea purpurea, E. angustifolia, E. pallida and Parthenium integrifolium. Biologia 62:2–5

    Article  Google Scholar 

  • Nikolaus RA, Piatelli M, Fattorusso E (1964) The structure of melanins and melanogenesis: IV. On some natural melanins. Tetrahedron 20:1163–1172

    Google Scholar 

  • O’Brien TP (1976) Observations on the fine structure of the oat coleoptile I. The epidermal cells of the extreme apex. Protoplasma 63:385–416

    Google Scholar 

  • Özdemir Ö, Keleş Y (2018) Extraction, purification, antioxidant properties and stability conditions of phytomelanin pigment on the sunflower seeds. Int J Second Metab 5:140–148

    Google Scholar 

  • Pandey AK, Lee WW, Sack FD, Stuessy TF (1989) Development of the phytomelanin layer in fruits of Ageratum conyzoides (Compositae). Am J Bot 75:739–746

    Article  Google Scholar 

  • Pandey AK (1998) Development of phytomelanin in fruits of Tagetes patula (Asteraceae). J Indian Bot Soc77:35–38

  • Pandey AK, Dhakal MR (2001) Phytomelanin in Compositae. Curr Sci 80:933–940

    CAS  Google Scholar 

  • Pandey AK, Stuessy TF, Mathur RR (2014) Phytomelanin and systematics of the Heliantheae alliance (Compositae). Plant Divers Evol 131:1–21

    Google Scholar 

  • Panero JL (2007) Key to the tribes of the Heliantheae alliance. In: Kadereit JW, Jeffrey C (eds) The Families and Genera of Vascular Plants. Flowering Plants. Eudicots. Asterales. Springer, Berlin, pp 391–395

    Google Scholar 

  • Park KIL, Ishikawa N, Morita Y, Choi JD, Hoshino A, Iida S (2007) A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J 49:641–654

    Article  CAS  PubMed  Google Scholar 

  • Park KIL (2012) A bHLH protein partially controls proanthocyanidin and phytomelanin pigmentation in the seed coats of morning glory Ipomoea tricolor. Hort. Environ. Biotechnol 53:304–309

    Article  CAS  Google Scholar 

  • Pinard D, Mizrachi E (2018) Unsung and understudied: plastids involved in secondary growth. Curr Opin Plant Biol 42:30–36

    Article  CAS  PubMed  Google Scholar 

  • Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms-biotechnological and medical aspects. Acta Biochim Pol 53:429–443

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Chapman N, Xia Z, Feng M, Feng S, Wang Z, Liu L (2017) Ultramicroscopy reveals a layer of multiply folded membranes around the tannin-accumulating vacuole in honeysuckle petal trichomes. Micron 99:1–8

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate and high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers CE, Stafford RE, Kreitner GL (1982) Phytomelanin development and role in hybrid resistance to Homoeosoma electellum (Hulst.) larvae. In: Proceedings of the 10th International Sunflower Conference. Surfers Paradise, Australia, pp 138–141

    Google Scholar 

  • Rogers CE, Kreitner GL (1983) Phytomelanin of sunflower achenes: a mechanism for pericarp resistance to abrasion by larvae of the sunflower moth (Lepidoptera: Pyralidae). Environ Entomol 2:1–9

    CAS  Google Scholar 

  • Roshchina VV, Roshchina VD (1993) The elimination of substances in response to extreme factors. In: Roshchina VV, Roshchina VD (eds) The excretory Function of Higher Plants. Springer-Verlag, Berlin, pp 195–198

    Chapter  Google Scholar 

  • Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol 48:247–249

    Article  CAS  PubMed  Google Scholar 

  • Sava VM, Yang SM, Hong MY, Yang PC, Huang GS (2001) Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chem 73:177–184

    Article  CAS  Google Scholar 

  • Shoeva OY, Mursalimov SR, Gracheva NV, Glagoleva AY, Börner A, Khlestkina EK (2020) Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Sci Rep 10:1–9

    Article  CAS  Google Scholar 

  • Solano F (2014) Melanins: skin pigments and much more types, structural models, biological functions, and formation routes. New J Sci, pp:1–28

  • Thadeo M, Hampilos KE, Stevenson DW (2015) Anatomy of fleshy fruits in the monocots. Am J Bot 102:1757–1779

    Article  CAS  PubMed  Google Scholar 

  • Upton R, Graff A, Jolliffe G, Laenger R, Williamson E (2011) American herbal pharmacopoeia: botanical pharmacognosy. Microscopic Characterization of Botanical Medicines. CRC Press, Boca Raton, p 810

    Google Scholar 

  • Volet DP (2017) Estudo florístico e taxonômico do gênero Piptocarpha R. Br (Asteraceae: Vernonieae) no estado de São Paulo, Brasil. MSc Thesis, University of Campinas, Brazil, 123p.

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Cell Biol 4:475–478

    Article  CAS  Google Scholar 

  • Wittich PE, Graven P (1995) Histochemical study of the development of the phytomelan layer in the seed coat of Gasteria verrucosa (Mill.) H. Duval. Protoplasma 187:72–78

    Article  Google Scholar 

  • Wittich PE, Graven P (1998) Callose deposition and breakdown, followed by phytomelan, synthesis in the seed coat of Gasteria verrucosa (Mill.) H. Duval. Protoplasma 201:221–230

    Article  CAS  Google Scholar 

  • Zhao J, Pang Y, Dixon RA (2010) The mysteries of proanthocyanidin transport and polymerization. Plant Physiol 153:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Departamento de Botânica of the Universidade Federal de Santa Catarina - UFSC, especially to the Laboratório de Anatomia Vegetal (LAVEG) for the structure provided. The group wishes to thank the Laboratório Central de Microscopia Eletrônica (LCME-BIO-2020, UFSC) and the Laboratório Multiusuário de Estudos em Biologia (LAMEB, UFSC) for the use of its facilities. Thanks to the National Council for Scientific and Technological Development (CNPq) for the productivity grant (311721/2018-4) and the Coordination for the Improvement of Higher Education Personnel (CAPES) by the Master’s Degree fellowship granted to the first author (CAPES-DS from 01 March 2017 to 28 February 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiane Wolff Coutinho.

Additional information

Handling Editor: Handling Editor: Jaideep Mathur

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, J.W., Rodrigues, A.C., Appezzato-da-Glória, B. et al. Plastid role in phytomelanin synthesis in Piptocarpha axillaris (Less.) Baker stems (Asteraceae, Vernonieae). Protoplasma 258, 963–977 (2021). https://doi.org/10.1007/s00709-021-01615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01615-3

Keywords

Navigation