Skip to main content

Advertisement

Log in

At3g53630 encodes a GUN1-interacting protein under norflurazon treatment

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016) Learning the languages of the chloroplast: Retrograde signaling and beyond. Annu Rev Plant Biol 67:25–53

    Article  CAS  Google Scholar 

  • Citovsky V, Lee LY, Vyas S, Glick E, Chen MH, Vainstein A, Gafni Y, Gelvin SB, Tzfira T (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  Google Scholar 

  • Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P (2016) GUN1, a jack-of-all-trades in chloroplast protein homeostasis and signaling. Front Plant Sci 7:1427

    Article  Google Scholar 

  • Gopinath K, Wellink J, Porta C, Taylor KM, Lomonossoff GP, van Kammen A (2000) Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267:159–173

    Article  CAS  Google Scholar 

  • Gray JC, Sullivan JA, Wang J-H, Jerome CA, MacLean D (2003) Coordination of plastid and nuclear gene expression. Philos Trans R Soc Lond B 358:135–144

    Article  CAS  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. 4th edn. Cold Spring Harbor Laboratory Press, Cold Springer Harbor

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hernández-Verdeja T, Strand Å (2018) Retrograde signals navigate the path to chloroplast development. Plant Physiol 176:967–976

    Article  Google Scholar 

  • Huang X-Q, Zhao L, Rui J-D, Zhou C-F, Zhuang Z, Lu S (2017) At5g19540 encodes a novel protein that affects pigment metabolism and chloroplast development in Arabidopsis thaliana. Front Plant Sci 8:2140

    Article  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  CAS  Google Scholar 

  • Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:50521

    Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci U S A 105:15184–15189

    Article  CAS  Google Scholar 

  • Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228

    Article  CAS  Google Scholar 

  • Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A 105:15178–15183

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51:328–332

    Article  CAS  Google Scholar 

  • Nott A, Jung H-S, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  Google Scholar 

  • Page MT, Kacprzak SM, Mochizuki N, Okamoto H, Smith AG, Terry MJ (2017) Seedlings lacking the PTM protein do not show a genomes uncoupled (gun) mutant phenotype. Plant Physiol 174:21–26

    Article  CAS  Google Scholar 

  • Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609

    Article  CAS  Google Scholar 

  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Spetea C, Rintamäki E, Schoefs B (2014) Changing the light environment: chloroplast signalling and response mechanisms. Philos Trans R Soc B 369:20130220

    Article  Google Scholar 

  • Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421:79–83

    Article  CAS  Google Scholar 

  • Sun T, Zhou F, Huang X-Q, Chen W-C, Kong M-J, Zhou C-F, Zhuang Z, Li L, Lu S (2019) ORANGE represses chloroplast biogenesis in etiolated Arabidopsis cotyledons via interaction with TCP14. Plant Cell 31:2996–3014

  • Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477

  • Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74:787–799

  • Tadini L, Pesaresi P, Kleine T, Rossi F, Guljamow A, Sommer F, Mühlhaus T, Schroda M, Masiero S, Pribil M, Rothbart M, Hedtke B, Grimm B, Leister D (2016) GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis. Plant Physiol 170:1817–1830

    Article  CAS  Google Scholar 

  • Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Miñambres M, Walther D, Schulze WX, Paz-Ares J, Scheible W-R, Kragler F (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1:15025

    Article  CAS  Google Scholar 

  • Wang Q, Cao TJ, Zheng H, Zhou CF, Wang Z, Wang R, Lu S (2019) Manipulation of carotenoid metabolic flux by lycopene cyclization in ripening red pepper (Capsicum annuum var. Conoides) fruits. J Agric Food Chem 67:4300–4310

    Article  CAS  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    Article  CAS  Google Scholar 

  • Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897–903

    Article  CAS  Google Scholar 

  • Wu G-Z, Chalvin C, Hoelscher MP, Meyer EH, Wu XN, Bock R (2018) Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol 176:2472–2495

    Article  CAS  Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hybrigenics Services for the help with Y2H screening, and Zhong Zhuang for assisting in confocal microscope observations.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 90817002 and 31770331) and the State Key Basic Research Project of China (No. 2013CB127004).

Author information

Authors and Affiliations

Authors

Contributions

X.H., L.W., M.K., and S.L. designed the research, analyzed results, and wrote the manuscript; X.H., L.W., M.K., N.H., X.-Y.L., H.-Y.L., and J.Z. performed the experiments.

Corresponding author

Correspondence to Shan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jaideep Mathur

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3932 kb)

ESM 2

(DOCX 758 kb)

ESM 3

(DOCX 40 kb)

ESM 4

(DOCX 970 kb)

ESM 5

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XQ., Wang, LJ., Kong, MJ. et al. At3g53630 encodes a GUN1-interacting protein under norflurazon treatment. Protoplasma 258, 371–378 (2021). https://doi.org/10.1007/s00709-020-01578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01578-x

Keywords