Skip to main content

Gene expression in regenerating and scarring tails of lizard evidences three main key genes (wnt2b, egfl6, and arhgap28) activated during the regulated process of tail regeneration

Abstract

We have analyzed the expression of key genes orchestrating tail regeneration in lizard under normal and scarring conditions after cauterization. At 1-day post-cauterization (1 dpc), the injured blastema contains degenerating epithelial and mesenchymal cells, numerous mast cells, and immune cells. At 3 and 7 dpc, a stratified wound epidermis is forming while fibrocytes give rise to a scarring connective tissue. Oncogenes such as wnt2b, egfl6, wnt6, and mycn and the tumor suppressor arhgap28 are much more expressed than other oncogenes (hmga2, rhov, fgf8, fgfr4, tert, shh) and tumor suppressors (apcdd1, p63, rb, fat2, bcl11b) in the normal blastema and at 7 dpc. Blastemas at 3 dpc feature the lowest upregulation of most genes, likely derived from damage after cauterization. Immunomodulator genes nfatc4 and lef1 are more expressed at 7 dpc than in normal blastema and 3 dpc suggesting the induction of immune response favoring scarring. Balanced over-expression of oncogenes, tumor suppressor genes, and immune modulator genes determines regulation of cell proliferation (anti-oncogenic), of movement (anti-metastatic), and immunosuppression in the normal blastema. Significant higher expression of oncogenes wnt2b and egfl6 in normal blastema and higher expression of the tumor suppressor arhgap28 in the 7 dpc blastema indicate that they are among the key/master genes that determine the regulated regeneration of the tail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Akimoto S, Ishikawa O, IIjima C, Miyachi Y (1999) Expression of basic fibroblast growth factor and its receptors by fibroblasts, macrophages and mast cells in hypertrophic scar. Eur J Dermatol 9:357–362

    CAS  PubMed  Google Scholar 

  • Alibardi L (1993) Observations on the ultrastructure of blood capillaries in the regenerating blastema of lizard in relation to the blood-brain barrier. Eur Arch Biol 104(1):21–27

    Google Scholar 

  • Alibardi L (2010) Morphological and cellular aspects of tail and limb regeneration in lizard: a model system with implications for tissue regeneration in mammals. Adv Anat Embryol Cell Biol 207:1–109

    Google Scholar 

  • Alibardi L (2013) Ultrastructural observations on the scarring process in the cauterized tail and the amputated limb of lizard. Trends Dev Biol 7:15–24

    Google Scholar 

  • Alibardi L (2014) Histochemical, biochemical and cell biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration. Progr Histochem Cytochem 48(4):143–244

    Google Scholar 

  • Alibardi L (2017a) Review: biological and molecular differences between tail regeneration and limb scarring in lizard, an inspiring model addressing limb regeneration in amniotes. J Exp Zool B Mol Dev Evol 328:493–514

    CAS  PubMed  Google Scholar 

  • Alibardi L (2017b) Immunolocalization of sonic hedgehog and patched in the regenerating tail of lizard suggests they are involved in cell proliferation and epidermal differentiation. BAOJ Dermatol 1:004

    Google Scholar 

  • Alibardi L (2018) Perspective: appendages regeneration in amphibians and some reptiles derived from specific evolutionary histories. J Exp Zool 330B:396–405

    Google Scholar 

  • Alibardi L (2019a) Review. The regenerating tail blastema of lizard as a model to study organ regeneration and tumor growth regulation in amniotes. Anat Rec 302:1469–1490

    Google Scholar 

  • Alibardi L (2019b) Review. Tail regeneration in lepidosauria as an exception to the generalized lack of organ regeneration in amniotes. J Exp Zool B Mol Dev Evol. https://doi.org/10.1002/jez.b.22901

  • Alibardi L (2019c) Review. Stimulation of regenerative blastema formation in lizards as a model to analyze limb regeneration in amniotes. Histol Histopathol 34:1111–1120

    CAS  PubMed  Google Scholar 

  • Andrade P, Pinho C, Pérez I de Lanuza G, Afonso S, Brejcha J, Rubin CJ, Wallerman O, Pereira P, Sabatino SJ, Bellati A, Pellitteri-Rosa D, Bosakova Z, Bunikis I, Carretero MA, Feiner N, Marsik P, Paupério F, Salvi D, Soler L, While GM, Uller T, Font E, Andersson L, Carneiro M (2019) Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard. Proc Natl Acad Sci U S A 116:5633–5642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avram D, Califano D (2014) The multifaceted roles of Bcl11b in thymic and peripheral T cells - impact on immune diseases. J Immunol 193:2059–2065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Ingram P, Chen YC, Deng N, Pearson A, Niknafs YS, O’Hayer P, Wang Y, Zhang ZY, Boscolo E, Bischoff J, Yoon E, Buckanovich RJ (2016) EGFL6 regulates the asymmetric division, maintenance, and metastasis of ADLH+ ovarian cancer cells. Cancer Res 76:6396–6409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellairs A d’A, Bryant SV (1985) Autotomy and regeneration in reptiles. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia. Wiley, New York, pp 302–410

    Google Scholar 

  • Bomben R, Dal-Bo M, Benedetti D, Capello D, Forconi F, Marconi D, Bertoni F, Maffei R, Laurenti L, Rossi D, Del Principe MI, Luciano F, Sozzi E, Cattarossi I, Zucchetto A, Rossi FM, Bulian P, Zucca E, Nicoloso MS, Degan M, Marasca R, Efremov DG, Del PG, Gaidano G, Gattei V (2010) Expression of mutated IGHV3-23 genes in chronic lymphocytic leukemia identifies a disease subset with peculiar clinical and biological features. Clin Cancer Res 16:620–628

    CAS  PubMed  Google Scholar 

  • Brandt TM, Iida M, Li C, Wheeler DL (2011) The nuclear epidermal growth factor receptor signaling network. Discov Med 12:419–432

    Google Scholar 

  • Chen Y, Peng Y, Fan S, Li Y, Xiao ZX, Li C (2018) A double dealing tale of p63: an oncogene or a tumor suppressor. Cell Mol Life Sci 75:965–973

    CAS  PubMed  Google Scholar 

  • Cho SG (2017) APC downregulated 1 inhibits breast cancer cell invasion by inhibiting the canonical wnt signaling pathway. Oncol Lett 14:4845–4852

    PubMed  PubMed Central  Google Scholar 

  • Chuong CM, Patel N, Lin J, Jung HS, Widelitz RB (2000) Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: perspectives in development and evolution. Cell Mol Life Sci 57:1672–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay MR, Halloran MC (2013) Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development 140:3198–3209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PG (1969) Some aspects of tail regeneration in the lizard Anolis carolinensis. II. The role of the peripheral nerves. J Exp Zool 171:151–160

    Google Scholar 

  • El-Sayed Y (2016) Time course of histomorphologic features during chronic burn wound healing. Forensic Med Anat Res 4:1–6

    Google Scholar 

  • Fedele M, Battista S, Manfioletti G, Croce CM, Giancotti V, Fusco A (2001) Role of the high mobility group A proteins in human lipomas. Carcinogenesis 22:1583–1591

    CAS  PubMed  Google Scholar 

  • Fior J (2014) Salamander regeneration as a model for developing novel regenerative and anticancer therapies. J Cancer 5:715–719

    PubMed  PubMed Central  Google Scholar 

  • Fisher RE, Geiger LA, Stroik LK, Hutchins ED, George RM, DeNardo DF, Kosumi K, Rawls JA, Wilson-Rawls J (2012) A histological comparison of the original and regenerated tail in the green anole, Anolis carolinensis. Anat Rec 295:1609–1619

    Google Scholar 

  • Geetha-Loganathan P, Nimmagadda S, Scaal M (2008) Wnt signaling in limb organogenesis. Organogenesis 4:109–115

    PubMed  PubMed Central  Google Scholar 

  • Gilbert EA, Delorme SL, Vickaryous MK (2015) The regeneration blastema of lizards: an amniote model for the study on appendage replacement. Regeneration 2:45–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchins ED, Markov GJ, Eckalbar WL, George RM, King JM, Tokuyama MA, Geiger LA, Emmert N, Ammar MJ, Allen AN, Siniard AL, Corneveaux JJ, Fisher RE, Wade J, DeNardo DF, Rawls JA, Huentelman MJ, Wilson-Rawls J, Kusumi K (2014) Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms. PLoS One 9:e105004

    PubMed  PubMed Central  Google Scholar 

  • Katoh M, Katoh M (2009) Transcriptional regulation of wnt2b based on the balance of Hedgehog, Notch, BMP and WNT signals. Int J Oncol 34:1411–1415

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Capdevila J, Büscher D, Itoh T, Rodríguez Esteban C, Izpisúa Belmonte JC (2001) Wnt signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104:891–900

    CAS  PubMed  Google Scholar 

  • Kominami R (2012) Role of the transcription factor Bcl11b in development of lymphoangiogenesis. Proc Jpn Acad Ser B Phys Biol Sci 88:72–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lateef Z, Stuart G, Jones N, Mercer A, Fleming S, Wise L (2019) The cutaneous inflammatory response to thermal burn injury in a murine model. Int J Mol Sci 20:E538

    PubMed  Google Scholar 

  • Liu Y, Zhou Q, Wang Y, Luo L, Yang J, Yang L, Liu M, Li Y, Qian T, Zheng Y, Li M, Li J, Gu Y, Han Z, Xu M, Wang Y, Zhu C, Yu B, Yang Y, Ding F, Jiang J, Yang HGX (2015) Gekko japonicus genome reveal evolution of adhesive toe pads and tail regeneration. Nat Commun 6:10033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozito TP, Tuan RS (2016) Lizard tail skeletal regeneration combines aspects of fracture healing and blastema-based regeneration. Development 143:2946–2957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozito TP, Tuan RS (2017) Lizard tail regeneration as an instructive model of enhanced healing capabilities in an adult amniote. Connect Tissue Res 58:145–154

    CAS  PubMed  Google Scholar 

  • Macian F (2005) Nfat proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484

    CAS  PubMed  Google Scholar 

  • Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C (2002) FGFR4 signaling is a necessary step in limb muscle differentiation. Development 129:4559–4569

    CAS  PubMed  Google Scholar 

  • Marsch SK, Bansal GS, Zammit C, Barnard R, Coope R, Roberts-Clarke D, Gomm JJ, Coombes RC, Johnston CL (1999) Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene 18:1053–1060

    Google Scholar 

  • Mescher AL (2017) Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration 4:39–53

    PubMed  PubMed Central  Google Scholar 

  • Moritz AR (1947) Studies on thermal injury. III. The pathology and pathogenesis of cutaneous burns, an experimental study. Am J Pathol 23:915–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris LG, Ramaswami D, Chan TA (2013) The FAT epidemic, a gene family frequently mutated across multiple cancer types. Cell Cycle 12:1011–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne SL, Peacock HM, Vickaryous MK (2017) Blood vessel formation during tail regeneration in the leopard gecko (Eublepharis macularius). J Morphol 278:380–389

    PubMed  Google Scholar 

  • Pomeranz JH, Blau HM (2013) Tumor suppressors: enhancers or suppressors of regeneration? Development 140:2502–2512

    Google Scholar 

  • Prehn RT (1997) Commentary. Regeneration versus neoplastic growth. Carcinogenesis 18:1439–1444

    CAS  PubMed  Google Scholar 

  • Ronca R, Tamma R, Coltrini D, Ruggieri S, Presta M, Ribatti D (2017) Fibroblast growth factor modulates mast cell recruitment in a murine model of prostate cancer. Oncotarget 8:82583–82592

    PubMed  PubMed Central  Google Scholar 

  • Santiago L, Daniels G, Wang D, Deng FM, Lee P (2017) Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res 7:1389–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarig R, Tzahor E (2017) The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians? Carcinogenesis 38:359–366

    CAS  PubMed  Google Scholar 

  • Scala C, Cenacchi G, Ferrari C, Pasquinelli G, Preda P, Manara GC (1992) A new acrylic resin formulation: a useful tool for histological, ultrastructural, and immunocytochemical investigations. J Histochem Cytochem 40:1799–1804

    CAS  PubMed  Google Scholar 

  • Schaale K, Brandenburg J, Kispert A, Leitges M, Ehlers S, Reiling N (2013) Wnt6 is expressed in granulomatous lesions of Mycobacterium tuberculosis-infected mice and is involved in macrophage differentiation and proliferation. J Immunol 191:5182–5195

    CAS  PubMed  Google Scholar 

  • Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H (2015) Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 361:174–184

    CAS  PubMed  Google Scholar 

  • Simpson SB (1965) Regeneration of the lizard tail. In: Kiortsis V, Trampusch HAL (eds) Regeneration in animals and related problems. North-Holland, Amsterdam, 431–443

  • Solis GP, Lüchtenborg AM, Katanaev VL (2013) Wnt secretion and gradient formation. Int J Mol Sci 14:5130–5145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Mariani FV, Martin GR (2002) Functions of FGF signaling from the apical ectodermal ridge in limb development. Nature 418:501–508

    CAS  PubMed  Google Scholar 

  • Thies HW, Nolte I, Wenk H, Mertens F, Bullerdiek J, Markowski DN (2014) Permanent activation of HMGA2 in lipomas mimics its temporal physiological activation linked to the gain of adipose tissue. Obesity 21:141–150

    Google Scholar 

  • van Helden SF, Anthony EC, Dee R, Hordijk PL (2012) Rho GTPase expression in human myeloid cells. PLoS One 7:e42563

    PubMed  PubMed Central  Google Scholar 

  • Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    CAS  PubMed  Google Scholar 

  • Vélez-Cruz R, Johnson DG (2017) The retinoblastoma (RB) tumor suppressor. Pushing back against genome instability on multiple fronts. Int J Mol Sci 18:E1776

    PubMed  Google Scholar 

  • Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L (2017a) Transcriptome analysis of the regenerating tail versus the scarring limb in lizard reveals pathways leading to successful versus unsuccessful organ regeneration in amniotes. Dev Dyn 246:116–134

    CAS  PubMed  Google Scholar 

  • Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L (2017b) Down-regulation of lizard immuno-genes in the regenerating tail and myo-genes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. Protoplasma 254:2127–2141

    CAS  PubMed  Google Scholar 

  • Whyte JL, Smith AA, Helms JA (2016) Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 4:a008078

    Google Scholar 

  • Wilgus TA, Wulff BC (2014) The importance of mast cells in dermal scarring. Adv Wound Care 3:356–365

    Google Scholar 

  • Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA (2012) Mast cells contribute to scar formation during fetal wound healing. J Inv Dermatol 132:458–465

    CAS  Google Scholar 

  • Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, Zhao X, Chen X, Paradee WJ, Meyrholz DK, Peng W, Xue HH (2019) Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med 216:847–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung CYC, Taylor SH, Garva R, Holmes DF, Zeef LA, Soininen R, Booth-Handford RP, Kadler KE (2014) Arggap28 is a RhoGAP that inactivates RhoA and downregulates stress fibers. PLoS One 9:e107036

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Comparative Histolab Padova (LA) supported part of the present study (animal housing, experiments, sample preparation, and microscopic studies). MDG was supported by Centro di Riferimento Oncologico di Aviano (PN). LDV was supported by the University of Padova (RFO, 2018-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Alibardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Jörn Bullerdiek

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Degan, M., Dalla Valle, L. & Alibardi, L. Gene expression in regenerating and scarring tails of lizard evidences three main key genes (wnt2b, egfl6, and arhgap28) activated during the regulated process of tail regeneration. Protoplasma 258, 3–17 (2021). https://doi.org/10.1007/s00709-020-01545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01545-6

Keywords

  • Lizard
  • Tail blastema
  • Scar
  • Microscopy
  • Gene expression