Skip to main content

Structure and development of anthers and connective glands in two species of Stigmaphyllon (Malpighiaceae): are heteromorphic anthers related to division of labour?

Abstract

Heteranthery has been largely associated with a division of labour between anthers. Most species of Stigmaphyllon (Malpighiaceae) present heteromorphic anthers and glandular connectives of different development; yet, the functional meaning of this condition has never been explored in the genus. The aims of this study were to provide a comparative description of the structure and development of anthers and their connective glands in S. bonariense and S. jatrophifolium and to assess the existence of division of functions. Natural populations were selected to collect flowers at different stages. Anthers were subjected to morpho-anatomical, histochemical and pollen viability studies. For both species, abundance of pollen grains and size of anther and their connective glands were estimated. Three types of stamens are recognized: stamen with small, intermediate and large anthers. Anthers of both species exhibit a similar glandular tissue in the connective, and the histochemical analysis revealed that it produce a mucilagous secretion. The pattern of anther wall development, stainability and release of pollen grains was identical among anther types. For both species, we observed a positive relationship between anther size and abundance of pollen grains, but an inverse relationship between area of anthers and size (area and thickness) of connective glands in small anthers vs. intermediate and large ones. Our results evidence a specialization of anthers related to division of labour between heteromorphic stamens in two species of Stigmaphyllon. Thus, one set of anthers produces large amount of pollen grains for pollination and another sets large quantities of mucilage, which would improve pollen transport (better adherence to pollinator body and dampness maintenance). Nevertheless, heteranthery in both Stigmaphyllon species would represent a transitional state towards the division of labour rather than a stable state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Acevedo-Rodríguez P (1993) Systematics of Serjania (Sapindaceae). Part I: a revision of Serjania sect. Platycoccus. Mem New York Bot Gard 67:1–93

    Google Scholar 

  2. Ainsworth C (2000) Boys and girls come out to play: the biology of dioecious plants. Ann Bot 86:211–221

    Google Scholar 

  3. Aliscioni SS, Torretta JP (2017) Malpighiaceae. In: Zuloaga FO, Belgrano MJ (eds) Flora Argentina, vol 17. Sigma, Buenos Aires, pp 163–205

    Google Scholar 

  4. Aliscioni SS, Gotelli M, Torretta JP (2018) Structure of the stigma and style of Callaeum psilophyllum (Malpighiaceae) and its relation with potential pollinators. Protoplasma 255:1433–1442

    CAS  PubMed  Google Scholar 

  5. Almeida RF, Mamede MCH (2016) Sinopse de Malpighiaceae no Estado do Espírito Santo, Brasil: Stigmaphyllon. A. Juss. Hoehnea 43:601–633

    Google Scholar 

  6. Anderson WR (1979) Floral conservatism in Neotropical Malpighiaceae. Biotropica 11:219–223

    Google Scholar 

  7. Anderson WR (1981) Malpighiaceae: the botany of Guayana Highland. Part XI. Mem New York Bot Gard 32:21–305

    Google Scholar 

  8. Anderson C (1982) A monograph of the genus Peixotoa (Malpighiaceae). Contr Univ Michigan Herb 15:1–92

    Google Scholar 

  9. Anderson C (1986) Novelties in Stigmaphyllon (Malpighiaceae). Syst Bot 11:120–130

    Google Scholar 

  10. Anderson WR (1990) The origin of the Malpighiaceae-the evidence from morphology. Mem New York Bot Gard 64:210–224

    Google Scholar 

  11. Anderson CE (1997) Monograph of Stigmaphyllon (Malpighiaceae). Syst Bot Monogr 51:1–313

    Google Scholar 

  12. Anderson CE (2011) Revision of Ryssopterys and transfer to Stigmaphyllon (Malpighiaceae). Blumea 56:73–104

    Google Scholar 

  13. Anderson WR, Anderson C, Davis CC (2006) Malpighiaceae. http://herbarium.lsa.umich.edu/malpigh/index.html [January 2019]

  14. Barônio GJ, Maciel AA, Oliveira AC, Kobal RO, Meireles DA, Brito VL, Rech AR (2016) Plantas, polinizadores e algumas articulações da biologia da polinização com a teoria ecológica. Rodriguésia 67:275–293

    Google Scholar 

  15. Barrett SC (2010) Darwin’s legacy: the forms, function and sexual diversity of flowers. Philos Trans R Soc Lond Ser B Biol Sci 365:351–368

    Google Scholar 

  16. Barrios D, Flores J, González-Torres LR, Palmarola A (2015) The role of mucilage in the germination of Leptocereus scopulophilus (Cactaceae) seeds from Pan de Matanzas, Cuba. Botany 93:251–255

    Google Scholar 

  17. Bhandari NN (1984) The microsporangium. In: Jhori BM (ed) Embriology of angiosperms. Springer-Verlag, Berlin, pp 53–121

    Google Scholar 

  18. Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York

    Google Scholar 

  19. Buchmann SL (1987) The ecology of oil flowers and their bees. Annu Rev Ecol Evol Syst 18:343–369

    Google Scholar 

  20. Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci 324:543–550

    CAS  Google Scholar 

  21. Collin CL, Shykoff JA (2003) Outcrossing rates in the gynomonoecious-gynodioecious species Dianthus sylvestris (Caryophyllaceae). Am J Bot 90:579–585

    PubMed  Google Scholar 

  22. D'Ambrogio de Argüeso A (1986) Manual de técnicas en histología vegetal. Hemisferio Sur S.A, Buenos Aires

    Google Scholar 

  23. David R, Carde JP (1964) Coloration différentielle des pseudophylles de Pinmaritime au moyen du réactif de Nadi. C R Acad Sci 258:1338–1340

    CAS  Google Scholar 

  24. Davis G (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  25. Davis CC, Anderson WR (2010) A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. Am J Bot 97:2031–2048

    PubMed  Google Scholar 

  26. Davis CC, Anderson WR, Donoghue MJ (2001) Phylogeny of Malpighiaceae: evidence from chloroplast ndhF and trnL-F nucleotide sequences. Am J Bot 88:1830–1846

    CAS  PubMed  Google Scholar 

  27. Davis CC, Schaefer H, Xi Z, Baum DA, Donoghue MJ, Harmone LJ (2014) Long-term morphological stasis maintained by a plant–pollinator mutualism. Proc Natl Acad Sci U S A 111:5914–5919

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dulberger R (1981) The floral biology of Cassia didymobotrya and Cassia auriculata (Caesalpiniaceae). Am J Bot 68:1350–1360

    Google Scholar 

  29. Ferrucci MS, Anzótegui LM (1993) El polen de Paullinieae (Sapindaceae). Bonplandia 6:211–243

    Google Scholar 

  30. Forbes HO (1882) Two kinds of stamens with different functions in the same flower. Nature 26:386

    Google Scholar 

  31. Gates B (1982) Banisteriopsis, Diplopterys (Malpighiaceae). In: Flora Neotropica Monograph, vol 30. Hafner, New York, pp 1–237

    Google Scholar 

  32. Geber MA (1985) The relationship of plant size to self-pollination in Mertensia ciliata. Ecology 66:762–772

    Google Scholar 

  33. Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bonplandia 9:287–294

    Google Scholar 

  35. González VV, Solís SM, Ferrucci MS (2017) Embryological studies of Magonia pubescens (Dodonaeaeae, Sapindaceae): development of male and female gametophytes in both floral morphs and its phylogenetic implications. Aust Syst Bot 30:279–289

    Google Scholar 

  36. Gottsberger G (1986) Some pollination strategies in Neotropical savannas an forest. Pl Syst Evol 152:29–45

    Google Scholar 

  37. Harder LD (1990) Pollen removal by bumble bees and its implications for pollen dispersal. Ecology 71:1110–1125

    Google Scholar 

  38. Harder LD, Barrett SC (1995) Mating cost of large floral displays in hermaphrodite plants. Nature 373:512

    CAS  Google Scholar 

  39. Hrycan WC, Davis AR (2005) Comparative structure and pollen production of the stamens and pollinator-deceptive staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae). Ann Bot 95:1113–1130

    PubMed  PubMed Central  Google Scholar 

  40. Hufford LD, Endress P (1989) The diversity of anther structures and dehiscence patterns among Hamamelididae. Bot J Linn Soc 99:301–346

    Google Scholar 

  41. Johansen DA (1940) Plant Microtechnique. McGraw-Hill BooK Co, New York

    Google Scholar 

  42. Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embriology of angiosperms, vol 1. Springer–Verlag, Berlin, pp 1–614

    Google Scholar 

  43. Kaul ML (2012) Male sterility in higher plants, vol 10. Springer Science & Business Media

  44. Klinkhamer PG, de Jong TJ (1993) Attractiveness to pollinators: a plant's dilemma. Oikos 66:180–184

    Google Scholar 

  45. Luo ZL, Gu L, Zhang DX (2009) Intrafloral differentiation of stamens in heterantherous flowers. J Syst Evol 47:43–56

    Google Scholar 

  46. Luque R, Sousa HC, Kraus JE (1996) Métodos de coloração de Roeser (1972) modificado-E Kropp (1972), visando a substituição do Azul de Astra por Azul de Alcião 8GS ou 8GX. Acta Bot Bras 10:199–212

    Google Scholar 

  47. Michener CD (2007) The bees of the world, 2nd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  48. Miyashita RK, Nakasone HY, Lamoureux CH (1964) Reproductive morphology of acerola (Malpighia glabra L.). University of Hawaii. Hawaii Agricultural Experiment Station 63:1–31

    Google Scholar 

  49. Múlgura de Romero ME (2005) Malpighiaceae. In: Burkart AE, Bacigalupo NM (eds) Flora Ilustrada de Entre Ríos (Argentina): dicotiledóneas arquiclamídeas. Geraniales a Umbeliflorales, Instituto Nacional de Tecnología Agropecuaria, Secretaría de Agricultura, Ganadería, Pesca y Alimentos, Buenos Aires, pp 71–86

  50. Müller H (1881) Two kinds of stamens with different functions in the same flower. Nature 24:307–308

    Google Scholar 

  51. Müller H (1882) Two kinds of stamens with different functions in the same flower. Nature 26:30

    Google Scholar 

  52. Müller F (1883) Two kinds of stamens with different functions in the same flower. Nature 27:364–365

    Google Scholar 

  53. Neff JL, Simpson BB (1981) Oil-collecting structures in the Anthophoridae (Hymenoptera): morphology function and use in systematics. J Kansas Entomol Soc 54:95–123

    Google Scholar 

  54. O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty. Ltd., Melbourne

    Google Scholar 

  55. Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Pl Syst Evol 149:155–185

    Google Scholar 

  56. Paulino JV, Mansano VF, Teixeira SP (2013) Elucidating the unusual floral features of Swartzia dipetala (Fabaceae). Bot J Linn Soc 173:303–320

    Google Scholar 

  57. Paulino JV, Mansano VF, Prenner G (2016) Evidence for division of labor and division of function related to the pollen release in Papilionoideae (Leguminosae) with a heteromorphic androecium. Int J Bot 177:590–607

    Google Scholar 

  58. Possobom CCF, Guimaraes E, Machado SR (2015) Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora 211:26–39

    Google Scholar 

  59. R Core Team (2013) R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria) Available at: http://www.r-project.org

  60. Radford AE, Dickison WC, Massey JR, Bell CR (1974) Vascular plant systematics. Harper & Row Publishers, New York

    Google Scholar 

  61. Rego MMC, Albuquerque PMC (1989) Comportamento das abelhas visitantes de múrice, Byrsonima crassifolia (L.) Kunth, Malpighiaceae. Bol Mus Para Emílio Goeldi Série Zoologia 5:179–193

    Google Scholar 

  62. Reis MG, Faria AD, Alves-dos-Santos I, Amaral MCE, Marsaioli AJ (2007) Byrsonic acid—the clue to floral mimicry involving oil-producing flowers and oil-collecting bees. J Chem Ecol 33:1421–1429

    CAS  PubMed  Google Scholar 

  63. Renner SS, Schaefer H (2010) The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. Philos Trans R Soc Lond Ser B Biol Sci 365:423–435

    CAS  Google Scholar 

  64. Rodríguez-Riaño T, Ortega-Olivencia A, Devesa JA (1999) Types of androecium in the Fabaceae of SW Europe. Ann Bot 83:109–116

    Google Scholar 

  65. Sazima M, Sazima I (1989) Oil-gathering bees visit flowers of eglandular morphs of the oil-producing Malpighiaceae. Bot Acta 102:106–111

    Google Scholar 

  66. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:46–60

    Google Scholar 

  68. Siddiqui SA (1968) The microsporangium and the male gametophyte in Malpighia coccigera Linn. Beitr Biol Pflanzen 44:361–364

    Google Scholar 

  69. Sigrist MR, Sazima M (2004) Pollination and reproductive biology of twelve species of Neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Ann Bot 94:33–41

    PubMed  PubMed Central  Google Scholar 

  70. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68:301–322

    Google Scholar 

  71. Singh B (1959) Studies in the Malpighiaceae I. morphology of Thryallis glauca Kuntze. Hort Adv 3:1–19

    Google Scholar 

  72. Smith CA, Evenson WE (1978) Energy distribution in reproductive structures of Amaryllis. Am J Bot 65:714–716

    Google Scholar 

  73. Solís SM, Galati B, Ferrucci MS (2010) Microsporogenesis and microgametogenesis of Cardiospermum grandiflorum and Urvillea chacoensis (Sapindaceae, Paullinieae). Aust J Bot 58:597–604

    Google Scholar 

  74. Steiner KE (1985) Functional dioicism in the Malpighiaceae: Spachea membranacea Cuatr. Am J Bot 72:1537–1543

    Google Scholar 

  75. Stern WL, Curry KJ, Whitten WM (1986) Staining fragrance glands in orchid flowers. Bull Torrey Bot Club 113:288–297

    Google Scholar 

  76. Teixeira LAG, Machado IC (2000) Sistema de polinização e reprodução de Byrsonima sericea DC (Malpighiaceae). Acta Bot Bras 14:347–357

    Google Scholar 

  77. Torretta JP, Aliscioni SS, González-Arzac A, Avalos AA (2017) Is the variation of floral elaiophore size in two species of Stigmaphyllon (Malpighiaceae) dependent on interaction with pollinators? Plant Ecol Divers 10:403–418

    Google Scholar 

  78. Vallejo-Marín M, Manson JS, Thomson JD, Barrett SC (2009) Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. J Evol Biol 22:828–839

    PubMed  Google Scholar 

  79. Vallejo-Marín M, Silva EM, Sargent RD, Barrett SC (2010) Trait correlates and functional significance of heteranthery in flowering plants. New Phytol 188:418–425

    PubMed  Google Scholar 

  80. Velloso MSC, Brito VLG, Caetano APS, Romero R (2018) Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham. (Melastomataceae). Acta Bot Bras 32:349–358

    Google Scholar 

  81. Vinson SB, Frankie GW, Williams HJ (1996) Chemical ecology of bees of the genus Centris (Hymenoptera: Apidae). Fla Entomol 79:109–129

    CAS  Google Scholar 

  82. Vogel S (1974) Ölblumen und ölsammelndeBienen. Trop Subtrop Pflanzenwelt 7:1–267

    Google Scholar 

  83. Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem New York Bot Gard 55:130–142

    Google Scholar 

  84. Westerkamp CH (1996) Pollen in bee-flower relations some considerations on melittophily. Botanica Acta 109:325–332

    Google Scholar 

  85. Zarlavsky GE (2014) Histología Vegetal: técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos Aires

    Google Scholar 

  86. Zini ML, Galati GB, Solís SM, Ferrucci MS (2012) Anther structure and pollen development in Melicoccus lepidopetalus (Sapindaceae): an evolutionary approach to dioecyin the family. Flora 207:712–720

    Google Scholar 

Download references

Acknowledgments

We thank H. J. Marrero for his support on statistical analysis, N. A. Ramirez for helping with the statistical figures and S. S. Aliscioni for the constructive comments on our work.

Author information

Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Adan Alberto Avalos. The first draft of the manuscript was written by Adan Alberto Avalos, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Funding information

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP N° 11220170100429C) and the Universidad Nacional del Nordeste (PI N° 15-A002), Argentina.

Corresponding author

Correspondence to Adan Alberto Avalos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Dorota Kwiatkowska

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avalos, A.A., Pablo, T.J., Lattar, E.C. et al. Structure and development of anthers and connective glands in two species of Stigmaphyllon (Malpighiaceae): are heteromorphic anthers related to division of labour?. Protoplasma 257, 1165–1181 (2020). https://doi.org/10.1007/s00709-020-01497-x

Download citation

Keywords

  • Heteranthery
  • Division of labour
  • Anther structure
  • Connective glands
  • Stigmaphyllon
  • Neotropical Malpighiaceae