Skip to main content
Log in

Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Carotenoids are a group of natural pigments that are widely distributed in various plants. Carrots are plants rich in carotenoids and have fleshy roots with different colors. Carotenoid accumulation is a complex regulatory process with important guiding significance for carrot production. In this work, three carrot cultivars with different taproot colors, Hongxinqicun (orange), Benhongjinshi (red), and Tianzi (purple) were chosen as experimental materials to explore the molecular mechanism of carotenoid accumulation in carrot. Results showed that the three carotenoids, namely, α-carotene, β-carotene, and lutein, had accumulated in orange carrot cultivar Hongxinqicun. Lycopene was only detected in the taproots of Benhongjinshi. Lutein was the main carotenoid in Tianzi. Comparison of the carotenoid contents in different tissues of carrot showed that leaf blade was the tissue with the highest carotenoid accumulation. Expression analysis of carotenoid biosynthesis genes and its correlation with carotenoid accumulation confirmed the regulatory role of structural genes in carrots. The high expression of five lycopene synthesis-related genes, DcPSY2, DcPDS, DcZDS1, DcCRT1, DcCRT2, and low expression of DcLCYE may result in the lycopene accumulation in Benhongjinshi. However, the function of certain genes, such as DcPSY1 that was lowly expressed in red carrot, requires further investigation. Our results provided potential insights into the mechanism of carotenoid accumulation in three carrot cultivars with different taproot colors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CRTISO:

Carotenoid isomerase

DAS:

Days after sowing

DMAPP:

Dimethylallyl diphosphate

DW:

Dry weight

GGPP:

Geranylgeranyl diphosphate

GGPS:

Geranylgeranyl diphosphate synthase

IPP:

Isopentenyl diphosphate

LCYB:

Lycopene β-cyclase

LCYE:

Lycopene ε-cyclase

MEP:

Methylerythritol 4-phosphate

PDS:

Phytoene desaturase

PSY:

Phytoene synthase

RT-qPCR:

Quantitative real-time PCR

UPLC:

Ultra-high performance liquid chromatography

Z-ISO:

ζ-carotene isomerase

ZDS:

ζ-carotene desaturase

References

  • Andrews AC (1949) The carrot as a food in the classical era. Class Philol 44(3):182–196

    Article  Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151(1):59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R (2014) Carotene hydroxylase activity determines the levels of both alpha-carotene and total carotenoids in orange carrots. Plant Cell 26(5):2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banga O (1957) The development of the original European carrot material. Euphytica 6(1):64–76

    Google Scholar 

  • Biacs PA, Daood HG, Kadar I (1995) Effect of Mo, Se, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrot. J Agric Food Chem 43(3):589–591

    Article  CAS  Google Scholar 

  • Cavagnaro PF, Chung SM, Manin S, Yildiz M, Ali A, Alessandro MS, Iorizzo M, Senalik DA, Simon PW (2011) Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genomics 12(1):386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claudia S, Paulina F, Michael H, Lorena P (2008) Daucus carota as a novel model to evaluate the effect of light on carotenoigenic gene expression. Biol Res 41(3):289–301

    Google Scholar 

  • Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, Geoffriau E (2008) Expression of carotenoid biosynthesis genes during carrot root development. J Exp Bot 59(13):3563–3573

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol 49:557–583

    Article  CAS  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2(4):e35010

    Article  CAS  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit-development. Plant Physiol 105(1):405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8(5):693–701

    Article  CAS  Google Scholar 

  • Gao HY, Zhu HL, Shao Y, Chen AJ, Lu CW, Zhu BZ, Luo YB (2008) Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. J Integr Plant Biol 50(8):991–996

    Article  CAS  PubMed  Google Scholar 

  • Grassmann J, Schnitzler WH, Habegger R (2007) Evaluation of different coloured carrot cultivars on antioxidative capacity based on their carotenoid and phenolic contents. Int J Food Sci Nutr 58(8):603–611

    Article  CAS  PubMed  Google Scholar 

  • Heywood VH (1983) Relationshops and evolution in the Daucus carota complex. Isr J Plant Sci 32(2):51–65

    Google Scholar 

  • Hill HM, Calderwood SK, Rogers LJ (1971) Conversion of lycopene to β-carotene by plastids isolated from higher plants. Phytochemistry 10(9):2051–2058

    Article  CAS  Google Scholar 

  • Hirschberg J, Cohen M, Harker M, Lotan T, Mann V, Pecker I (1997) Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure Appl Chem 69(10):2151–2158

    Article  CAS  Google Scholar 

  • Hornero-Mendez D, de Guevara RGL, Minguez-Mosquera MI (2000) Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem 48(9):3857–3864

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang JY, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgorni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng ZJ, Cheng SF, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100(5):930–938

    Article  PubMed  Google Scholar 

  • Jourdan M, Gagne S, Dubois-Laurent C, Maghraoui M, Huet S, Suel A, Hamama L, Briard M, Peltier D, Geoffriau E (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population. PLoS One 10(1):e0116674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Just BJ, Santos CA, Fonseca ME, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114(4):693–704

    Article  CAS  PubMed  Google Scholar 

  • Just BJ, Santos CAF, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated x wild carrot cross. Theor Appl Genet 119(7):1155–1169

    Article  PubMed  Google Scholar 

  • Krubasik P, Sandmann G (2000) Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 28(6):806–810

    Article  CAS  PubMed  Google Scholar 

  • Laufer B (1919) Sino-Iranica : Chinese contributions to the history of civilization in ancient Iran : with special reference to the history of cultivated plants and products. Add1 12(4):662–664

    Google Scholar 

  • Li L, Yuan H (2013) Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 539(2):102–109

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Li BX, Han XR (2016) Advances in phytoene dehydrogenase. Acta Microbiol Sin 56(11):1680–1690

    Google Scholar 

  • Li JW, Ma J, Feng K, Liu JK, Que F, Xiong AS (2018) Carotenoid accumulation and distinct transcript profiling of structural genes involved in carotenoid biosynthesis in celery. Plant Mol Biol Report 36:663–674

    Article  CAS  Google Scholar 

  • Li JW, Ma J, Feng K, Xu ZS, Xiong AS (2019) Transcriptome profiling of β-carotene ciosynthesis genes and β-carotene accumulation in leaf blades and petioles of celery cv. Jinnanshiqin Acta Bioch Bioph Sin 51(1):116–119

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1985) Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem Soc Trans 11(5):591–592

    Article  Google Scholar 

  • Lindgren LO, Stalberg KG, Hoglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132(2):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Yang X, Xu J, Zhang M, Hou Q, Zhu L, Huang Y, Xiong A (2017) Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock. Acta Biochim Biophys Sin 49(3):216–227

    CAS  PubMed  Google Scholar 

  • Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot 58(15–16):4161–4171

    Article  CAS  PubMed  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22(6):503–513

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49(5–6):557–577

    Article  CAS  PubMed  Google Scholar 

  • Ma C, He J, Hao QN, Wang L, Lu XY, Ma BG (2010) Construction of RNAi plant expression vectors for interfering lycopene cylase-β/ε genes and its expression analysis. J Nucl Agric Sci 24(3):482–489

    CAS  Google Scholar 

  • Ma C, Ma BG, He J, Hao QN, Lu XY, Wang L (2011) Regulation of carotenoid content in tomato by silencing of lycopene β/ε-cylase genes. Plant Mol Biol Report 29:117–124

    Article  CAS  Google Scholar 

  • Ma J, Xu ZS, Tan GF, Wang F, Xiong AS (2017) Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Acta Biochim Biophys Sin 49(9):817–826

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li JW, Xu ZS, Wang F, Xiong AS (2018) Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochim Biophys Sin 50(5):481–490

    Article  CAS  PubMed  Google Scholar 

  • Ma ZG, Kong XP, Liu LJ, Ou CG, Sun TT, Zhao ZW, Miao ZJ, Rong J, Zhuang FY (2016) The unique origin of orange carrot cultivars in China. Euphytica 212(1):37–49

    Article  CAS  Google Scholar 

  • Maass D, Arango J, Wust F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4(7):e6373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mlodzinska E (2009) Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biol Cracov 51(1):7–16

    Google Scholar 

  • Moreno JC, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C (2013) Levels of lycopene beta-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS One 8(3):e58144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Paulina F, Lorena P, Juan CM, Michael H, Manuel R, Claudia S (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79(1–2):47–59

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS (2019) Advances in research on the carrot, an important root vegetable in the Apiaceae family. Hortic Res 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson GH, Mahoney NE, Goodman N, Pavlath AE (1995) Regulation of lycopene formation in cell-suspension culture of VFNT tomato (Lycopersicon Esculentum) by CPTA, growth-regulators, sucrose, and temperature. J Exp Bot 46(287):667–673

    Article  CAS  Google Scholar 

  • Rong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, de Jong TJ, Klinkhamer PGL, Smulders MJM, Vrieling K (2014) New insights into domestication of carrot from root transcriptome analyses. BMC Genomics 15(1):895

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandmann G, Romer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8(4):291–302. https://doi.org/10.1016/j.ymben.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  • Santos CAF, Senalik D, Simon PW (2005) Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots. Genet Mol Biol 28(2):287–293

    Article  CAS  Google Scholar 

  • Schofield A, Paliyath G (2005) Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. Plant Physiol Biochem 43(12):1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Soltoft M, Bysted A, Madsen KH, Mark AB, Bugel SG, Nielsen J, Knuthsen P (2011) Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J Sci Food Agric 91(4):767–775

    Article  CAS  PubMed  Google Scholar 

  • Surles RL, Weng N, Simon PW, Sherry ATT (2004) Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota L.) of various colors. J Agric Food Chem 52(11):3417–3421

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS (2015) Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellins biosynthesis and perception during carrot growth and development. Hort Res 2:15028

    Article  CAS  Google Scholar 

  • Wang GL, Tian C, Jiang Q, Xu ZS, Wang F, Xiong AS (2016) Comparison of nine reference genes for real-time quantitative PCR in roots and leaves during five developmental stages in carrot (Daucus carota L.). J Hortic Sci Biotechnol 91(3):264–270

    Article  CAS  Google Scholar 

  • Wang Q, Huang XQ, Cao TJ, Zhuang Z, Wang R, Lu S (2018) Heteromeric geranylgeranyl diphosphate synthase contributes to carotenoid biosynthesis in ripening fruits of red pepper (Capsicum annuum var. conoides). J Agric Food Chem 66(44):11691–11700

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Chen CX, Yu QB, Gady A, Yu Y, Liang GL, Gmitter FG (2014) Novel expression patterns of carotenoid pathway-related genes in citrus leaves and maturing fruits. Tree Genet Genomes 10(3):439–448

    Article  Google Scholar 

  • Xu ZS, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database 2014(bau096):1229–1245

    Google Scholar 

  • Xu ZS, Yang QQ, Feng K, Xiong AS (2019) Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiol 181:195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Yang QQ, Feng K, Yu X, Xiong AS (2020) DcMYB113 a root-specific R2R3-MYB conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol J. https://doi.org/10.1111/pbi.13325

  • Ye XD, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin a (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by National Natural Science Foundation of China (31872098), the Open Fund of the State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University (ZW201905), the New Century Excellent Talents in University (NCET-11-0670), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ASX, YHW. Performed the experiments: YHW, TL, RRZ, and AK. Analyzed the data: YHW, TL, YST, and ZSX. Contributed reagents/materials/analysis tools: ASX. Wrote the paper: YHW. Revised the paper: ASX. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jaideep Mathur

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Li, T., Zhang, RR. et al. Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors. Protoplasma 257, 949–963 (2020). https://doi.org/10.1007/s00709-020-01482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01482-4

Keywords

Navigation