Skip to main content

Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro

Abstract

The transcriptional and posttranscriptional AGO-mediated control of gene expression may play important roles during male monocot gametophyte development. In this report, we demonstrated dynamic changes in the spatiotemporal distribution of AGO1 and AGO4, which are key proteins of the RNA-induced silencing complex (RISC) in Hyacinthus orientalis male gametophyte development. During maturation of the bicellular pollen grains and in vitro pollen tube growth, the pattern of AGO1 localization was correlated with previously observed transcriptional activity of the cells. During the period of high transcriptional activity, AGO1 is associated with chromatin while the clustered distribution of AGO1 in the interchromatin areas is accompanied by condensation of chromatin and the gradual transcriptional silencing of both cells in mature, dehydrated pollen. During pollen tube growth and the restarting of RNA synthesis in the vegetative nucleus, AGO1 is dispersed in the chromatin. Additionally, the gradual increase in the cytoplasmic pool of AGO1 in the elongating pollen tube indicates the activation of the posttranscriptional gene silencing (PTGS) pathway. During pollen tube growth in the generative cell and in the sperm cells, AGO1 is present mainly in the areas between highly condensed chromatin clusters. Changes in the distribution of AGO4 that indicated the possibility of spatiotemporal organization in the RNA-directed DNA methylation (RdDM) process (cytoplasmic and nuclear steps) were also observed during hyacinth male gametophyte development. Based on our findings, we propose that in the germinating pollen tube, the cytoplasmic assembly of AGO4/siRNA takes place and that the mature complexes could be transported to the nucleus to carry out their function during the next steps of pollen tube growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

5mC:

5-Methylcytosine

acH4:

Acetylated histone H4

AGO1:

Argonaute 1

AGO4:

Argonaute 4

BMA:

Butyl methacrylate

GC:

Generative cytoplasm

GN:

Generative nucleus

MGU:

Male germ unit

miRNA:

Micro RNA

MMA:

Methyl methacrylate

PAb:

Polyclonal antibody

PTGS:

Posttranscriptional gene silencing

RdDM:

RNA-directed DNA methylation

RISC:

RNA-induced silencing complex

SC:

Sperm cell

siRNA:

Small interfering RNA

sRNA:

Small noncoding RNA

TE:

Transposable element

TGS:

Transcriptional gene silencing

VC:

Vegetative cytoplasm

VN:

Vegetative nucleus

References

  1. Arribas-Hernández L, Kielpinski LJ, Brodersen P (2016) mRNA decay of Most Arabidopsis miRNA targets requires slicer activity of AGO1. Plant Physiol 171:2620–2632. https://doi.org/10.1104/pp.16.00231

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933. https://doi.org/10.1073/pnas.0505461102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bednarska E, Górska-Brylass A (1987) Ultrastructural transformations of nuclei differentiating Hyacinthus orientalis L. pollen grain cells. Acta Soc Bot Pol 56:667–685. https://doi.org/10.5586/asbp.1987.057

    Article  Google Scholar 

  4. Bednarska E (1988) Ultrastructural transformations in the cytoplasm of differentiating Hyacinthus orientalis L. pollen cells. Acta Soc Bot Pol 57:235–245. https://doi.org/10.5586/asbp.1988.024

    Article  Google Scholar 

  5. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181. https://doi.org/10.1104/pp.108.125229

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620. https://doi.org/10.1093/jxb/erq452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Borges F, Martienssen RA (2013) Establishing epigenetic variation during genome reprogramming. RNA Biol 10:490–494. https://doi.org/10.4161/rna.24085

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Brewbaker JL, Kwack BH (1963) The essential role of calcium ions in pollen germination and pollen tube growth. Am J Bot 50:859–865 https://www.jstor.org/stable/2439772

    CAS  Article  Google Scholar 

  9. Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205. https://doi.org/10.1016/j.cell.2012.09.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:3613–3629. https://doi.org/10.1105/tpc.112.099945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 10:87. https://doi.org/10.1186/1471-2229-9-87

    CAS  Article  Google Scholar 

  12. Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303:1336 http://science.sciencemag.org/content/303/5662/1336

    CAS  Article  Google Scholar 

  13. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44. https://doi.org/10.1146/annurev.cellbio.042308.113417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Dolata J, Bajczyk M, Bielewicz D, Niedojadło K, Niedojadło J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 172:297–312. https://doi.org/10.1104/pp.16.00830

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 24:259–274 http://www.plantcell.org/cgi/doi/10.1105/tpc.111.092718

    CAS  Article  Google Scholar 

  16. Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423. https://doi.org/10.1016/j.pbi.2005.05.012

    CAS  Article  PubMed  Google Scholar 

  17. Grant-Downton R, Hafidh S, Twell D, Dickinson HG (2009a) Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol Plant 2:500–512. https://doi.org/10.1093/mp/ssp003

    CAS  Article  PubMed  Google Scholar 

  18. Grant-Downton R, Le Trionnaire G, Schmid R, Rodriguez-Enriquez J, Hafidh S, Mehdi S, Twell D, Dickinson H (2009b) MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genomics 10:643. https://doi.org/10.1186/1471-2164-10-643

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Grant-Downton R, Rodriguez-Enriquez J (2012) Emerging roles for non-coding RNAs in male reproductive development in flowering plants. Biomolecules 2:608–621. https://doi.org/10.3390/biom2040608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Grant-Downton R, Kourmpetli S, Hafidh S, Khatab H, Le Trionnaire G, Dickinson H, Twell D (2013) Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen. Curr Biol 23:R599–R601. https://doi.org/10.1016/j.cub.2013.05.055

    CAS  Article  PubMed  Google Scholar 

  21. Hafidh S, Fíla J, Honys D (2016) Male gametophyte development and function in angiosperms: a general concept. Plant Reprod 29:31–51. https://doi.org/10.1007/s00497-015-0272-4

    Article  PubMed  Google Scholar 

  22. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. https://doi.org/10.1038/nrm2321

    CAS  Article  PubMed  Google Scholar 

  23. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218

    CAS  Article  PubMed  Google Scholar 

  24. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451. https://doi.org/10.1186/1471-2164-9-451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kozłowska M, Niedojadło K, Brzostek M, Bednarska-Kozakiewicz E (2016) Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth. Plant Reprod 29:251–263 https://doi.org/10.1007/s00497-016-0289-3

    Article  Google Scholar 

  26. Lenartowski R, Suwińska A, Lenartowska M (2015) Calreticulin expression in relation to exchangeable Ca(2+) level that changes dynamically during anthesis, progamic phase, and double fertilization in Petunia. Planta 241:209–227. https://doi.org/10.1007/s00425-014-2178-z

    CAS  Article  PubMed  Google Scholar 

  27. Le Trionnaire G, Grant-Downton RT, Kourmpetli S, Dickinson HG, Twell D (2011) Small RNA activity and function in angiosperm gametophytes. J Exp Bot 62:1601–1610. https://doi.org/10.1093/jxb/erq399

    CAS  Article  PubMed  Google Scholar 

  28. Liu X, Lu T, Dou Y, Yu B, Zhang C (2014) Identification of RNA silencing components in soybean and sorghum. BMC bioinformatics 15:4. https://doi.org/10.1186/1471-2105-15-4

  29. Liu C, Xin Y, Xu L, Cai Z, Xue Y, Liu Y, Xie D, Liu Y, Qi Y (2017) Arabidopsis ARGONAUTE1 binds chromatin to promote gene transcription in response to hormones and stresses. Dev Cell 44:348–361. https://doi.org/10.1016/j.devcel.2017.12.002

    CAS  Article  PubMed  Google Scholar 

  30. Ma Z, Zhang X (2018) Actions of plant Argonautes: predictable or unpredictable? Curr Opin Plant Biol 45:59–67. https://doi.org/10.1016/j.pbi.2018.05.007

    CAS  Article  PubMed  Google Scholar 

  31. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(Suppl):S31–S36. https://doi.org/10.1038/ng1791

    CAS  Article  PubMed  Google Scholar 

  32. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889. https://doi.org/10.1105/tpc.110.080671

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Matzke MA, Kanno T, Matzke AJ (2015) RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267. https://doi.org/10.1146/annurev-arplant-043014-114633

    CAS  Article  PubMed  Google Scholar 

  34. Movahedi A, Sun W, Zhang J, Wu X, Mousavi M, Mohammadi K, Yin T, Zhuge Q (2015) RNA-directed DNA methylation in plants. Plant Cell Rep 34:1857–1862. https://doi.org/10.1007/s00299-015-1839-0

    CAS  Article  PubMed  Google Scholar 

  35. Niedojadło J, Dełeńko K, Niedojadło K (2016) Regulation of poly(a) RNA retention in the nucleus as a survival strategy of plants during hypoxia. RNA Biol 3:531–543. https://doi.org/10.1080/15476286.2016.1166331

    Article  Google Scholar 

  36. Peng H, Chun J, Ai TB, Tong YA, Zhang R, Zhao MM, Chen F, Wang SH (2012) MicroRNA profiles and their control of male gametophyte development in rice. Plant Mol Biol 80:85–102. https://doi.org/10.1007/s11103-012-9898-x

    CAS  Article  PubMed  Google Scholar 

  37. Poulsen C, Vaucheret H, Brodersen P (2013) Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25:22–37. https://doi.org/10.1105/tpc.112.105643

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B (2011) Identification and characterization of dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30:1347–1363. https://doi.org/10.1007/s00299-011-1046-6

    CAS  Article  PubMed  Google Scholar 

  39. Russell SD, Gou X, Wong CE, Wang X, Yuan T, Wei X, Bhalla PL, Singh MB (2012) Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage. New Phytol 195:560–573. https://doi.org/10.1111/j.1469-8137.2012.04199.x

    CAS  Article  PubMed  Google Scholar 

  40. Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472. https://doi.org/10.1016/j.cell.2008.12.038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, Cao X (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69:462–474. https://doi.org/10.1111/j.1365-313X.2011.04805.x

    CAS  Article  PubMed  Google Scholar 

  42. Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43. https://doi.org/10.1038/nchembio848

    CAS  Article  PubMed  Google Scholar 

  43. Van Ex F, Jacob Y, Martienssen RA (2011) Multiple roles for small RNAs during plant reproduction. Curr Opin Plant Biol 14:588–593. https://doi.org/10.1016/j.pbi.2011.07.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358. https://doi.org/10.1016/j.tplants.2008.04.007

    CAS  Article  PubMed  Google Scholar 

  45. Wang H, Zhang X, Liu J, Kiba T, Woo J, Ojo T, Hafner M, Tuschl T, Chua NH, Wang XJ (2011) Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Plant J 67:292–304. https://doi.org/10.1111/j.1365-313X.2011.04594.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12:R53. https://doi.org/10.1186/gb-2011-12-6-r53

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Wendte JM, Pikaard CS (2017) The RNAs of RNA-directed DNA methylation. Biochim Biophys Acta 1860:140–148. https://doi.org/10.1016/j.bbagrm.2016.08.004

    CAS  Article  Google Scholar 

  48. Ye R, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X, Qi Y (2012) Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell 46:859–870. https://doi.org/10.1016/j.molcel.2012.04.013

    CAS  Article  PubMed  Google Scholar 

  49. Zhai L, Sun W, Zhang K, Jia H, Liu L, Liu Z, Teng F, Zhang Z (2014) Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize. J Integr Plant Biol 56:1042–1052. https://doi.org/10.1111/jipb.12205

    CAS  Article  PubMed  Google Scholar 

  50. Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27:84–90. https://doi.org/10.1016/j.pbi.2015.06.011

    CAS  Article  PubMed  Google Scholar 

  51. Zienkiewicz K, Smoliński DJ, Bednarska E (2006) Distribution of poly(a) RNA and splicing machinery elements in mature Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. Protoplasma 227:95–103. https://doi.org/10.1007/s00709-005-0153-z

    CAS  Article  PubMed  Google Scholar 

  52. Zienkiewicz K, Zienkiewicz A, Smoliński DJ, Rafińska K, Świdziński M, Bednarska E (2008a) Transcriptional state and distribution of poly(a) RNA and RNA polymerase II in differentiating Hyacinthus orientalis L. pollen grains. Sex Plant Reprod 21:233–245. https://doi.org/10.1007/s00497-008-0085-9

    CAS  Article  Google Scholar 

  53. Zienkiewicz K, Zienkiewicz A, Rodriguez-Garcia MI, Smoliński DJ, Świdziński M, Bednarska E (2008b) Transcriptional activity and distribution of splicing machinery elements during Hyacinthus orientalis L. pollen tube growth. Protoplasma 233:129–139. https://doi.org/10.1007/s00709-008-0298-7

    CAS  Article  PubMed  Google Scholar 

  54. Zienkiewicz K, Suwińska A, Niedojadło K, Zienkiewicz A, Bednarska E (2011) Nuclear activity of sperm cells during Hyacinthus orientalis L. in vitro pollen tube growth. J Exp Bot 62:1255–1269. https://doi.org/10.1093/jxb/erq354

    CAS  Article  PubMed  Google Scholar 

  55. Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719. https://doi.org/10.1126/science.1079695

    CAS  Article  PubMed  Google Scholar 

  56. Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14:1214–1220. https://doi.org/10.1016/j.cub.2004.06.055

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This project was supported by Polish National Science Center (NCN) grant no. 2011/03/D/NZ3/00603 (to KN).

Author information

Affiliations

Authors

Contributions

KN conceived and designed research. KN, MK, AK-L, RL conducted the experiments. KN and AK-L performed the quantitative analysis. KN, JN, and EB-K analyzed the experimental and statistical data. KN wrote the paper.

Corresponding author

Correspondence to Katarzyna Niedojadło.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Burkhard Becker

Electronic supplementary material

Supplementary Fig. S1
figure7

(PNG 282 kb)

Supplementary Fig. S2
figure8

(PNG 485 kb)

Supplementary Fig. S3
figure9

(PNG 466 kb)

Supplementary Fig. S4
figure10

(PNG 1007 kb)

Supplementary Fig. S5
figure11

(PNG 837 kb)

Supplementary Fig. S6
figure12

(PNG 463 kb)

Supplementary Fig. S7
figure13

(PNG 557 kb)

Supplementary Fig. S8
figure14

(PNG 396 kb)

Supplementary Fig. S9
figure15

(PNG 389 kb)

Supplementary Fig. S10
figure16

(PNG 276 kb)

Supplementary Fig. S11
figure17

(PNG 955 kb)

High resolution image (TIF 21905 kb)

High resolution image (TIF 23367 kb)

High resolution image (TIF 23244 kb)

High resolution image (TIF 25985 kb)

High resolution image (TIF 25132 kb)

High resolution image (TIF 23006 kb)

High resolution image (TIF 23151 kb)

High resolution image (TIF 23045 kb)

High resolution image (TIF 23008 kb)

High resolution image (TIF 22167 kb)

High resolution image (TIF 25872 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niedojadło, K., Kupiecka, M., Kołowerzo-Lubnau, A. et al. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. Protoplasma 257, 793–805 (2020). https://doi.org/10.1007/s00709-019-01463-2

Download citation

Keywords

  • AGO1
  • AGO4
  • Male germ unit (MGU)
  • miRNA
  • Pollen tube
  • siRNA