Skip to main content
Log in

Gynoecium with carpel dimorphism in Tricomaria usillo, comparison with other genera of the Carolus clade (Malpighiaceae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

We analyzed the gynoecium morphology and anatomy of Tricomaria usillo in young and mature flowers from diverse populations in order to analyze the differentiation of structure and function of the parts of the carpel. We also aimed to find the potential pollinators and associate the morphology of the gynoecium with its role. We compare the characteristics of the gynoecium of T. usillo and discuss the carpel dimorphism with other genera within the Carolus clade in relation with their pollination syndromes. Carpels were processed according to classic techniques for scanning electron microscopy and bright field microscopy. We conducted field observation in different populations of T. usillo and captured the insects that were identified to specific level. The gynoecium of T. usillo shows inter-population and intra-individual variability. Some have three well-developed carpels, while most of them present two posterior carpels with differentiated styles and stigmas and the anterior one with a shorter style with or without stigma. The ovary has three locules with one ovule each. A compitum is formed and all ovules may be fecundated. However, fruits have generally one seed that develops in the anterior locule. Centris brethesi is the potential pollinator. The gynoecium of T. usillo reflects part of the variation in the carpel dimorphism that probably arose in the branch of the Carolus clade, and evolved in diverse ways in the lineages of this group. Tricomaria usillo seems to represent a recent transition towards reaching a stable form of carpel dimorphism and definitive division of labors of the carpels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliscioni SS, Torreta JP (2017) Malpighiaceae. Pages 163–205 in Flora Argentina, eds. Zuloaga FO, Belgrano MJ, Vol 17, Sigma, Buenos Aires

  • Aliscioni SS, Gotelli M, Torretta JP (2018) Structure of the stigma and style of Callaeum psilophyllum (Malpighiaceae) and its relation with potential pollinators. Protoplasma 255:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Anderson WR (1979) Floral conservatism in neotropical Malpighiaceae. Biotropica 11:219–223

    Article  Google Scholar 

  • Anderson WR (1990) The origin of the Malpighiaceae. The evidence from morphology. Mem New York Bot Gard 64:210–224

    Google Scholar 

  • Anderson WR (2006) Eight segregates from the neotropical genus Mascagnia (Malpighiaceae). Novon 16:168–204

    Article  Google Scholar 

  • Anderson WR, Anderson C, Davis CC (2006) Malpighiaceae. http://herbarium.lsa.umich.edu/malpigh/index.html [January 2019]

  • Armbruster WS, Debevec EM, Wilson MF (2002) Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J Evol Biol 15:657–672

    Article  Google Scholar 

  • Arumuganathan K, Udaiyan K, Sugavanam V (1994) Structure and ontogeny of floral and extrafloral nectaries in Hiptage benghalensis (L.) Kurz (Malpighiaceae). Adv Plant Sci 7:105–111

    Google Scholar 

  • Arumugasamy K, Inamdar JA, Subramanian RB (1989) Structure, ontogeny and secretion of oil secreting glands in Hiptage acuminate Wall. Curr Sci 58:260–261

    Google Scholar 

  • Bailey IW, Swamy BGL (1951) The conduplicate carpel of dicotyledons and its initial trends of specialization. Am J Bot 38:373–379

    Article  Google Scholar 

  • Baum H (1948) Postgenitale Verwachsung in und zwischen Karpell- und Staubblattkreisen. Sitz ber Österr Akad Wiss Math-Natur-wiss Kl, Abt1 157:17–38

    Google Scholar 

  • Cameron KM, Chase MW, Anderson WR, Hills HG (2001) Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences. Amer J Bot 88:1847–1862

    Article  CAS  Google Scholar 

  • Chase MW (1981) A revision of Dicella (Malpighiaceae). Syst Bot 6:159–171

    Article  Google Scholar 

  • Davis CC, Anderson WR (2010) A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. Amer J Bot 97:2031–2048

    Article  Google Scholar 

  • Davis CC, Anderson WR, Donoghue MJ (2001) Phylogeny of Malpighiaceae: evidence from chloroplast ndhF and trnl-F nucleotide sequences. Amer J Bot 88:1830–1846

    Article  CAS  Google Scholar 

  • Davis CC, Fritsch PW, Bell CD, Mathews S (2004) High-latitude tertiary migrations of an exclusively tropical clade: evidence from Malpighiaceae. Int J Pl Sci 165:S107–S121

    Article  CAS  Google Scholar 

  • Davis CC, Schaefer H, Xi Z, Baum DA, Donoghue MJ, Harmon LJ (2014) Long-term morphological stasis maintained by a plant-pollinator mutualism. Proc National Acad Sci USA 111:5914–5919

    Article  CAS  Google Scholar 

  • Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:121–153

    Article  Google Scholar 

  • Endress PK (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31:48–52

    Article  Google Scholar 

  • Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140

    Article  Google Scholar 

  • Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396

    Article  PubMed  Google Scholar 

  • Endress PK (2015) Patterns of Angiospermy development before carpel sealing across living angiosperms: diversity, and morphological and systematic aspects. Bot J Linn Soc 178:556–591

    Article  Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral flower and its initial specializations. Am J Bot 96:22–66

    Article  PubMed  Google Scholar 

  • Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:211–223

    Article  Google Scholar 

  • Launert E (1968) Malpighiaceae. Flora of tropical East Africa. 24 pp.

  • Leme FM, Staedler YM, Schönenberger J, Teixeira SP (2018) Ontogeny and vascularization elucidate the atypical floral structure of Ampelocera glabra, a tropical species of Ulmaceae. Int J Plant Sci 179:461–476

    Article  Google Scholar 

  • Niedenzu FJ (1928) Malpighiaceae Pars I Pages 67–84 in Das Pflanzenreich, ed. A Engler. IV, 141

  • Qian ZN, Meng QW, Ren MX (2016) Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers. Biodivers Sci 24:1364–1372

    Article  Google Scholar 

  • Roig Alsina A (2000) Claves para las especies argentinas de Centris (Hymenoptera, Apidae), con descripción de nuevas especies y notas sobre distribución. Revista Mus Argent Ci Nat, N S 2:171–193

    Article  Google Scholar 

  • Siegel BA, Verbeke JA (1989) Diffusible factors essential for epidermal cell redifferentiaion in Catharanthus roseus. Science 244:580–582

    Article  CAS  PubMed  Google Scholar 

  • Sigrist MR, Sazima M (2004) Pollination and reproductive biology of twelve species of Neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. Ann Bot 94:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokoloff DD, Nuraliev MS, Oskolski AA, Remizowa MV (2017) Gynoecium evolution in angiosperms: monomery, pseudomonomery, and mixomery. Mosc Univ Biol Sci Bull 72:97–108

    Article  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Subramanian RB, Arumugasamy K, Inamdar JA (1990) Studies in the secretory glands of Hiptage sericea (Malpighiaceae). Nord J Bot 10:57–62

    Article  Google Scholar 

  • Thiers B (2014) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/ih (accessed December 2018)

  • Verbeke JA (1992) Fusion events during floral morphogenesis. Annual Rev Pl Biol 43:583–598

    Article  Google Scholar 

  • Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem New York Bot Gard 55:130–142

    Google Scholar 

  • Walker DB (1975) Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). I. Light and scanning electron microscopic study of gynoecial ontogeny. Am J Bot 62:457–467

    Article  Google Scholar 

  • Wilczek R (1955) Novitates africanae I (Malpighiaceae et Linaceae). Bull Jard Bot État Bruxelles 25:303–313

    Article  Google Scholar 

  • Wilczek R (1959) Novitates africanae VI Flabellariopsis acuminata (Engl.) R. Wilczek descr. ampl. Bull Jard Bot État Bruxelles 29:193–194

    Article  Google Scholar 

  • Zarlavsky GE (2014) Histología Vegetal: técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos Aires, Argentina

  • Zhang W, Kramer EM, Davis CC (2016) Differential expression of CYC2 genes and the elaboration of floral morphologies in Hiptage, an Old World genus of Malpighiaceae. Int J Plant Sci 177:551–558

    Article  Google Scholar 

Download references

Acknowledgments

We thank G. Zarvlasky for technical assistance; A. Calviño for providing material from La Cantina, Córdoba; R. Saurral for the revision of the English language; and two anonymous reviewers.

Funding

This work was funded by a research grant from Agencia Nacional de Promoción Científica y Tecnológica, grant number PICT 2013-1867 to S. Aliscioni, Consejo Nacional de Investigaciones Científicas y Técnicas, grant number PIP 11220110100312, and Universidad de Buenos Aires, grant number UBACyT 20020130200203BA to J. P. Torretta. Sandra Aliscioni, Marina Gotelli and Juan Pablo Torretta are affiliated with Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Silvina Aliscioni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliscioni, S.S., Gotelli, M. & Torretta, J.P. Gynoecium with carpel dimorphism in Tricomaria usillo, comparison with other genera of the Carolus clade (Malpighiaceae). Protoplasma 256, 1133–1144 (2019). https://doi.org/10.1007/s00709-019-01373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01373-3

Keywords

Navigation