Skip to main content
Log in

Comparative analysis of remodelling of the plant–microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Infection of host cells by nitrogen-fixing soil bacteria, known as rhizobia, involves the progressive remodelling of the plant–microbe interface. This process was examined by using monoclonal antibodies to study the subcellular localisation of pectins and arabinogalactan proteins (AGPs) in wild-type and ineffective nodules of Pisum sativum and Medicago truncatula. The highly methylesterified homogalacturonan (HG), detected by monoclonal antibody JIM7, showed a uniform localisation in the cell wall, regardless of the cell type in nodules of P. sativum and M. truncatula. Low methylesterified HG, recognised by JIM5, was detected mainly in the walls of infection threads in nodules of both species. The galactan side chain of rhamnogalacturonan I (RG-I), recognised by LM5, was present in the nodule meristem in both species and in the infection thread walls in P. sativum, but not in M. truncatula. The membrane-anchored AGP recognised by JIM1 was observed on the plasma membrane in nodules of P. sativum and M. truncatula. In P. sativum, the AGP epitope recognised by JIM1 was present on mature symbiosome membranes of wild-type nodules, but JIM1 labelling was absent from symbiosome membranes in the mutant Sprint-2Fix (sym31) with undifferentiated bacteroids, suggesting a possible involvement of AGP in the maturation of symbiosomes. Thus, the common and species-specific traits of cell wall remodelling during nodule differentiation were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MAb:

Monoclonal antibody

HG:

Homogalacturonan

RG-I:

Rhamnogalacturonan I

AGP:

Arabinogalactan protein

PBS:

Phosphate-buffered saline

BSA-C:

Acetylated bovine serum albumin

DAI:

Days after inoculation

References

  • Andersen MCF, Boos I, Marcus SE, Kračun SK, Rydahl MG, Willats WGT, Knox JP, Clausen MH (2016) Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-D-galactotetraose. Carbohydr Res 436:36–40

    Article  CAS  PubMed  Google Scholar 

  • Anderson CT (2015) We be jammin’: an update on pectin biosynthesis, trafficking and dynamics. J Exp Bot 67:495–502

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Hahn MG, Faccio A, Mendgen K, Bonfante P (1996) Differential localization of carbohydrate epitopes in plant cell walls in the presence and absence of arbuscular mycorrhizal fungi. Plant Physiol 111:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellincampi D, Cervone F, Lionetti V (2014) Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions. Front Plant Sci 5:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Borisov AY, Rozov S, Tsyganov V, Kulikova O, Kolycheva A, Yakobi L, Ovtsyna A, Tikhonovich I (1994) Identification of symbiotic genes in pea (Pisum sativum L.) by means of experimental mutagenesis. Genetika (Russian Federation) 30:1484–1494

    Google Scholar 

  • Borisov AY, Rozov SM, Tsyganov VE, Morzhina EV, Lebsky VK, Tikhonovich IA (1997) Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L). Mol Gen Genet 254:592–598

    Article  CAS  PubMed  Google Scholar 

  • Bradley DJ, Wood EA, Larkins AP, Galfre G, Butcher GW, Brewin NJ (1988) Isolation of monoclonal antibodies reacting with peribacteriod membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta 173:149–160

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodelling in the Rhizobium–legume symbiosis. Crit Rev Plant Sci 23:293–316

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-P, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corral-Martínez P, García-Fortea E, Bernard S, Driouich A, Seguí-Simarro JM (2016) Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus. Plant Cell Physiol 57:2161–2174

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Dahiya P, Sherrier DJ, Kardailsky IV, Borisov AY, Brewin NJ (1998) Symbiotic gene Sym31 controls the presence of a lectinlike glycoprotein in the symbiosome compartment of nitrogen-fixing pea nodules. Mol Plant-Microbe Interact 11:915–923

    Article  CAS  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins (AGPs): key regulators at the cell surface? Plant Physiol 153:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fåhraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    PubMed  Google Scholar 

  • Gavrin A, Chiasson D, Ovchinnikova E, Kaiser BN, Bisseling T, Fedorova EE (2016) VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol 210:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Gawecki R, Sala K, Kurczyńska EU, Świątek P, Płachno BJ (2017) Immunodetection of some pectic, arabinogalactan proteins and hemicellulose epitopes in the micropylar transmitting tissue of apomictic dandelions (Taraxacum, Asteraceae, Lactuceae). Protoplasma 254:657–668

    Article  CAS  PubMed  Google Scholar 

  • Gorshkova T, Kozlova L, Mikshina P (2013) Spatial structure of plant cell wall polysaccharides and its functional significance. Biochem Mosc 78:836–853

    Article  CAS  Google Scholar 

  • Herbette S, Bouchet B, Brunel N, Bonnin E, Cochard H, Guillon F (2014) Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula×alba. Ann Bot 115:187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova KA, Tsyganova AV, Brewin NJ, Tikhonovich IA, Tsyganov VE (2015) Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma 252:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-D-Galactan. Plant Physiol 113:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardailsky IV, Sherrier DJ, Brewin NJ (1996) Identification of a new pea gene, PsNlec1, encoding a lectin-like glycoprotein isolated from the symbiosomes of root nodules. Plant Physiol 111:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaeva AB, Demchenko KN, Tikhonovich IA, Timmers ACJ, Tsyganov VE (2016) Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytol 210:168–183

    Article  CAS  PubMed  Google Scholar 

  • Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11:308–313

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Roberts K (1989) Carbohydrate antigens and lectin receptors of the plasma membrane of carrot cells. Protoplasma 152:123–129

    Article  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  PubMed  Google Scholar 

  • Kosterin OE, Rozov SM (1993) Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genet 25:27–31

  • Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K (2015) Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242:791–811

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Cervone F, Bellincampi D (2012) Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases. J Plant Physiol 169:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hou J, Chen H, Pei K, Li Y, He X-Q (2017) Dynamic changes of pectin epitopes in cell walls during the development of the procambium–cambium continuum in poplar. Int J Mol Sci 18:1716

    Article  CAS  PubMed Central  Google Scholar 

  • Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemankin N (2011) Analysis of pea (Pisum sativum L.) genetic system, controlling development of arbuscular mycorrhiza and nitrogen-fixing symbiosis. Dissertation Saint-Petersburg State University (in Russian)

  • Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A, Driouich A (2013) Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikova E, Journet E-P, Chabaud M, Cosson V, Ratet P, Duc G, Fedorova E, Liu W, den Camp RO, Zhukov V, Tikhonovich I, Borisov A, Bisseling T, Limpens E (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant-Microbe Interact 24:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Perotto S, Vandenbosch KA, Butcher GW, Brewin NJ (1991) Molecular composition and development of the plant glycocalyx associated with the Peribacteroid membrane of pea root-nodules. Development 112:763–773

    CAS  Google Scholar 

  • Rae AL, Bonfante-Fasolo P, Brewin NJ (1992) Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J 2:385–395

    Article  Google Scholar 

  • Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci 5:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruprecht C, Bartetzko MP, Senf D, Dallabernardina P, Boos I, Andersen MC, Kotake T, Knox JP, Hahn MG, Clausen MH (2017) A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies. Plant Physiol 175:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rydahl MG, Hansen AR, Kračun SK, Mravec J (2018) Report on the current inventory of the toolbox for plant cell wall analysis: proteinaceous and small molecular probes. Front Plant Sci 9:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Saffer AM (2018) Expanding roles for pectins in plant development. J Integr Plant Biol 60:910–923

    Article  CAS  PubMed  Google Scholar 

  • Sala K, Malarz K, Barlow PW, Kurczyńska EU (2017) Distribution of some pectic and arabinogalactan protein epitopes during Solanum lycopersicum (L.) adventitious root development. BMC Plant Biol 17:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serova TA, Tsyganova AV, Tsyganov VE (2018) Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages. Protoplasma 255:1443–1459

    Article  CAS  PubMed  Google Scholar 

  • Sherrier DJ, Borisov AY, Tikhonovich IA, Brewin NJ (1997) Immunocytological evidence for abnormal symbiosome development in nodules of the pea mutant line Sprint-2Fix (sym31). Protoplasma 199:57–68

    Article  Google Scholar 

  • Sherrier DJ, Prime TA, Dupree P (1999) Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis. Electrophoresis 20:2027–2035

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Sujkowska-Rybkowska M, Borucki W (2015) Pectins esterification in the apoplast of aluminum-treated pea root nodules. J Plant Physiol 184:1–7

    Article  CAS  PubMed  Google Scholar 

  • Torode TA, O’Neill R, Marcus SE, Cornuault V, Pose S, Lauder RP, Kračun SK, Rydahl MG, Andersen MC, Willats WG (2018) Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics. Plant Physiol 176:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Tsyganov VE, Borisov AY, Rozov SM, Tikhonovich IA (1994) New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE. Pisum Genet 26:36–37

    Google Scholar 

  • Tsyganov VE, Morzhina EV, Stefanov SY, Borisov AY, Lebsky VK, Tikhonovich IA (1998) The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol Gen Genet 259:491–503

    Article  CAS  PubMed  Google Scholar 

  • Tsyganov VE, Voroshilova VA, Borisov AY, Tikhonovich IA, Rozov SM (2000) Four more symbiotic mutants obtained using EMS mutagenesis of line SGE. Pisum Genet 32:63

    Google Scholar 

  • Tsyganova AV, Tsyganov V, Borisov AY, Tikhonovich IA, Brewin NJ (2009a) Comparative cytochemical analysis of hydrogen peroxide distribution in pea ineffective mutant SGEFix-1 (sym40) and initial line SGE. Ecol Genet  7(3):3–9

  • Tsyganova AV, Tsyganov VE, Findlay КC, Borisov AY, Tikhonovich IA, Brewin NG (2009b) Distribution of legume arabinogalactanprotein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. Cell Tissue Biol 51:53–62

    CAS  Google Scholar 

  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K-I, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  CAS  PubMed  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862

    Article  CAS  PubMed  Google Scholar 

  • Vernié T, Moreau S, de Billy F, Plet J, Combier J-P, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voroshilova VA, Boesten B, Tsyganov VE, Borisov AY, Tikhonovich IA, Priefer UB (2001) Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Mol Plant-Microbe Interact 14:471–476

    Article  CAS  PubMed  Google Scholar 

  • Wang TL, Wood EA, Brewin NJ (1982) Growth regulators, Rhizobium and nodulation in peas. Planta 155:350–355

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willats WG, Steele-King CG, Marcus SE, Knox JP (1999) Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J 20:619–628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jean-Marie Prosperi (INRA, Montpellier, France) for providing M. truncatula seeds, Peter Mergaert (Institut des Sciences Végétal, Gif sur Yvette, France) for the kind gift of seeds of the M. truncatula dnf1–1 mutant line and Pascal Gamas (Laboratoire des Interactions Plantes-Microorganismes, Castanet-Tolosan, France) for the kind gift of seeds TR3 and efd–1 mutants. The research was performed using equipment of the Core Centrum “Genomic Technologies, Proteomics and Cell Biology” in ARRIAM and the “Molecular and Cell Technologies” Research Resource Centre at Saint-Petersburg State University.

Funding

This work was financially supported by Russian Science Foundation (16–16–10035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor E. Tsyganov.

Additional information

Handling Editor: Ulrike Mathesius

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.03 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, A.V., Seliverstova, E.V., Brewin, N.J. et al. Comparative analysis of remodelling of the plant–microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules. Protoplasma 256, 983–996 (2019). https://doi.org/10.1007/s00709-019-01355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01355-5

Keywords

Navigation