, Volume 256, Issue 2, pp 503–509 | Cite as

In situ assessment of mitochondrial calcium transport in tobacco pollen tubes

  • Cesar Flores-Herrera
  • Gisela Preciado-Linares
  • Israel Gonzalez-Vizueth
  • Norma Corona de la Peña
  • Manuel Gutiérrez-AguilarEmail author
Original Article


Pollen tubes require functional mitochondria in order to achieve fast and sustained growth. In addition, cell wall expansion requires a calcium gradient in the tube apex formed by a dedicated array of calcium pumps and channels. Most studies have traditionally focused on the molecular aspects of calcium interactions and transport across the pollen tube plasmalemma. However, calcium transients across mitochondrial membranes from pollen tubes are beginning to be studied. Here, we report the presence of a ruthenium red-sensitive mitochondrial calcium uniporter-like activity in tobacco pollen tubes with functional oxidative phosphorylation. The present study provides a framework to measure in situ specifics of mitochondrial transport and respiration in pollen tubes from different plants. The relevance of a mitochondrial calcium uniporter for pollen tube growth is discussed.


Pollen tubes Nicotiana Mitochondrial calcium uniporter Transport Digitonin 



mitochondrial calcium uniporter


Arabidopsis thaliana mitochondrial calcium uniporter 1


Arabidopsis thaliana mitochondrial calcium uniporter 2


EF-hand MCU regulator


mitochondrial permeability transition


pollen germination


pollen tube assay


ruthenium red


reactive oxygen species



This work was supported by grant UNAM-FQ-PAIP 5000-9171 (to M.G.-A.). We would like to thank Dr. Sobeida Sánchez-Nieto and Dr. Felipe Cruz-García for providing valuable material resources and advice for the completion of this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2018_1316_Fig5_ESM.png (509 kb)
Figure S1

(A) Predicted Nicotiana tabacum MCU orthologues using Mus musculus MCU as template were found by a Basic Local Alignment Search Tool and aligned using Clustal Omega. Highly conserved residues encompassing the RuR- and calcium-binding domain are colored. Mitochondrial import probability (P) was assessed using Mitoprot and displayed after each predicted protein sequence segment alignment. (B) Mus musculus MICU1 was used as template for a Basic Local Alignment Search Tool. A phylogenetic tree was constructed using with the NCBI phylogenetic tree tool. (PNG 509 kb)

709_2018_1316_MOESM1_ESM.tif (1.1 mb)
High Resolution Image (TIF 1163 kb)


  1. Baines CP, Gutierrez-Aguilar M (2018) The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium 73:121–130. CrossRefPubMedGoogle Scholar
  2. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:736–745. CrossRefPubMedGoogle Scholar
  6. Braccini I, Perez S (2001) Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2:1089–1096CrossRefPubMedGoogle Scholar
  7. Claros MG (1995) MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci 11:441–447PubMedGoogle Scholar
  8. Collins S, Meyer T (2010) Cell biology: a sensor for calcium uptake. Nature 467:283. CrossRefPubMedPubMedCentralGoogle Scholar
  9. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Deluca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A 47:1744–1750CrossRefPubMedPubMedCentralGoogle Scholar
  11. Denton RM, McCormack JG (1980) On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett 119:1–8CrossRefPubMedGoogle Scholar
  12. Fiskum G (1985) Intracellular levels and distribution of Ca2+ in digitonin-permeabilized cells. Cell Calcium 6:25–37CrossRefPubMedGoogle Scholar
  13. He L, Li B, Lu X, Yuan L, Yang Y, Yuan Y, du J, Guo S (2015) The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia. Sci Rep 5:11391. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17:32–38. CrossRefPubMedGoogle Scholar
  15. Heslop-Harrison J, Heslop-Harrison Y (1988) Some permeability properties of angiosperm pollen grains, pollen tubes and generative cells. Sex Plant Reprod 1:65–73. Google Scholar
  16. Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kovacs-Bogdan E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A, Huber RJ, Myre MA, Blower MD, Mootha VK (2014) Reconstitution of the mitochondrial calcium uniporter in yeast. Proc Natl Acad Sci U S A 111:8985–8990. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca(2)(+) handling relationship in plant cells. Plant J 71:1–13. CrossRefPubMedGoogle Scholar
  19. Loro G, Ruberti C, Zottini M, Costa A (2013) The D3cpv Cameleon reports Ca(2)(+) dynamics in plant mitochondria with similar kinetics of the YC3.6 Cameleon, but with a lower sensitivity. J Microsc 249:8–12. CrossRefPubMedGoogle Scholar
  20. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164. CrossRefPubMedGoogle Scholar
  21. Mammucari C, Raffaello A, Vecellio Reane D, Gherardi G, De Mario A, Rizzuto R (2018) Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models Pflugers Arch
  22. Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ (2016) Architecture of the mitochondrial calcium uniporter. Nature 533:269–273. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15:1464–1472. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Penna E, Espino J, De Stefani D, Rizzuto R (2018) The MCU complex in cell death. Cell Calcium 69:73–80. CrossRefPubMedGoogle Scholar
  25. Perez-Vazquez V, Saavedra-Molina A, Uribe S (2003) In Saccharomyces cerevisiae, cations control the fate of the energy derived from oxidative metabolism through the opening and closing of the yeast mitochondrial unselective channel. J Bioenerg Biomembr 35:231–241CrossRefPubMedGoogle Scholar
  26. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rounds CM, Hepler PK, Fuller SJ, Winship LJ (2010) Oscillatory growth in lily pollen tubes does not require aerobic energy metabolism. Plant Physiol 152:736–746. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rounds CM, Winship LJ, Hepler PK (2011) Pollen tube energetics: respiration, fermentation and the race to the ovule. AoB Plants 2011:plr019. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci U S A 101:9502–9507. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Selles B, Michaud C, Xiong TC, Leblanc O, Ingouff M (2018) Arabidopsis pollen tube germination and growth depend on the mitochondrial calcium uniporter complex. New Phytol 219:58–65. CrossRefPubMedGoogle Scholar
  32. Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ, Chaudhuri D (2017) Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol 113:22–32. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Song LF, Zou JJ, Zhang WZ, Wu WH, Wang Y (2009) Ion transporters involved in pollen germination and pollen tube tip-growth. Plant Signal Behav 4:1193–1195CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Teardo E, Carraretto L, Wagner S, Formentin E, Behera S, de Bortoli S, Larosa V, Fuchs P, Lo Schiavo F, Raffaello A, Rizzuto R, Costa A, Schwarzländer M, Szabò I (2017) Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo. Plant Physiol 173:1355–1370. CrossRefPubMedGoogle Scholar
  37. Uribe S, Rangel P, Pardo JP (1992) Interactions of calcium with yeast mitochondria. Cell Calcium 13:211–217CrossRefPubMedGoogle Scholar
  38. Uribe-Carvajal S, Luevano-Martinez LA, Guerrero-Castillo S, Cabrera-Orefice A, Corona-de-la-Pena NA, Gutierrez-Aguilar M (2011) Mitochondrial Unselective Channels throughout the eukaryotic domain. Mitochondrion 11:382–390. CrossRefPubMedGoogle Scholar
  39. von Stockum S, Basso E, Petronilli V, Sabatelli P, Forte MA, Bernardi P (2011) Properties of Ca(2+) transport in mitochondria of Drosophila melanogaster. J Biol Chem 286:41163–41170. CrossRefGoogle Scholar
  40. Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, Cumming M, Kelley LA, Sternberg MJ, Krishnakumar V, Ferlanti E, Miller J, Town C, Stuerzlinger W, Provart NJ (2017) ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29:1806–1821. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci U S A 110:10479–10486. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico CityMexico
  2. 2.Unidad de Investigación en Trombosis, Hemostasia y AterogénesisHospital Carlos McGregorMéxico CityMexico

Personalised recommendations