Skip to main content
Log in

Histochemical and immunohistochemical analysis of enzymes involved in phenolic metabolism during berry development in Vitis vinifera L.

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Phenolics are involved in many of plants’ biological functions. In particular, they play important roles in determining the quality of grape berries and the wine made from them, and can also act as antioxidants with beneficial effects for human health. Several enzymes are involved in the synthesis of phenolic compounds. Among them, stilbene synthase (STS) is a key to the biosynthesis of stilbenes, which are considered to be important secondary metabolites in plants. Other enzymes, such as polyphenol oxidase (PPO) and peroxidase (POD), are involved in the degradation of phenolics, and become activated during late stages of berry ripening. In the present study, Vitis vinifera L. berries were sampled at eight stages of development, from 10 days after anthesis to late harvest. The PPO and POD enzymatic activities were determined at each stage. The presence of STS, PPO, and POD proteins in the grape exocarp and mesocarp was detected immunohistochemically and histochemically. The amount and intensity of the immunohistochemical and histochemical signals correlate with the variations in enzyme activities throughout fruit development. Strong STS immunoreactivity was detected until the onset of ripening. Labeled tissue increased gradually from mesocarp to exocarp, showing an intense signal in epidermis. At subcellular level, STS was mainly detected in cytoplasm grains and cell walls. The amount of PPO immunoreactivity increased progressively until the end of ripening. The PPO signal was detected in hypodermal layers and, to a lesser extent, in mesocarp parenchyma cells, especially in cytoplasm grains and cell walls. Finally, POD activity was stronger at the onset of ripening, and the POD histochemical signal was mainly detected in the cell walls of both exocarp and mesocarp tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcón MV, Lloret PG, Martín-Partido G, Salguero J (2016) The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells. J Plant Physiol 192:105–110

    Article  CAS  PubMed  Google Scholar 

  • Amrani-Joutei K, Glories Y, Mercier M (1994) Localization of tannins in grape berry skins. Vitis 33:133–138

    Google Scholar 

  • Andjelkovic M, Radovanovié B, Radovanovi A, Andjelkovic AM (2013) Changes in polyphenolic content and antioxidant activity of grapes cv vranac during ripening. S Afr J Enol Vitic 34(2):147–155

    CAS  Google Scholar 

  • Ayuso T, Moreno-Alías I, Valdés E, Uriarte D, Moreno D, Giraldo E, Prieto MH, Alarcón MV (2012) Estudio histológico de la distribución de los compuestos fenólicos en la piel de Vitis vinifera cv Tempranillo. Evolución durante la maduración. Acta Hortic 60:603–607

    Google Scholar 

  • Bejarano-Escobar R, Holguín-Arévalo MS, Montero JA, Francisco-Morcillo J, Martín-Partido G (2011) Macrophage and microglia ontogeny in the mouse visual system can be traced by the expression of Cathepsins B and D. Dev Dyn 240(7):1841–1855

    Article  CAS  PubMed  Google Scholar 

  • Bejarano-Escobar R, Blasco M, Durán AC, Martín-Partido G, Francisco-Morcillo J (2013) Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J Anat 223(2):171–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Bejarano-Escobar R, Álvarez-Hernán G, Morona R, González A, Martín-Partido G, Francisco-Morcillo J (2015) Expression and function of the LIM-homeodomain transcription factor Islet-1 in the developing and mature vertebrate retina. Exp Eye Res 138:22–31

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bustamante CA, Budde CO, Borsani J, Lombardo VA, Lauxmann MA, Andreo CS, Lara MV, Drincovich MF (2012) Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins. Plant Physiol Biochem 60:35–45

    Article  CAS  PubMed  Google Scholar 

  • Cadot Y, Miñana-Castelló MT, Chevalier M (2006) Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. J Agric Food Chem 54(24):9206–9215

    Article  CAS  PubMed  Google Scholar 

  • Cadot Y, Chevalier M, Barbeau G (2011) Evolution of the localisation and composition of phenolics in grape skin between veraison and maturity in relation to water availability and some climatic conditions. J Sci Food Agric 91:1963–1976

    Article  CAS  PubMed  Google Scholar 

  • Calderón AA, García-Florenciano E, Pedreño MA, Muñoz R, Ros Barceló A (1992) The vacuolar localization of grapevine peroxidase isoenzymes capable of oxidizing 4-hydroxystilbenes. Zeitschrift Naturforschung 47:215–221

    Article  Google Scholar 

  • Calderón AA, Zapata JM, Muñoz R, Ros Barceló A (1993) Localization of peroxidase in grapes using nitrocellulose blotting of freezing/thawing fruits. Hortscience 28:38–40

    Article  Google Scholar 

  • Carbonell-Bejerano P, Rodríguez V, Hernáiz S, Grimplet J, Royo C, Martínez-Zapater JM (2012) Análisis transcriptómico de la maduración en uvas de ‘Tempranillo’ y ‘Albariño’ (Vitis vinífera L.) clasificadas según su densidad. Acta Hortic 60:554–557

    Google Scholar 

  • Casado-Vela J, Sellés S, Bru R (2005) Purification and kinetic characterization of polyphenol oxidase from tomato fruits (Lycopersicon esculentum Cv. Muchamiel). J Food Biochem 29:381–401

    Article  CAS  Google Scholar 

  • Chamkha M, Cathala B, Cheynier V, Douillard R (2003) Phenolic composition of champagnes from Chardonnay and Pinot Noir vintages. J Agric Food Chem 51:3179–3184

    Article  CAS  PubMed  Google Scholar 

  • Dehon L, Mondolot L, Durand M, Chalies C, Andary C, Macheix JJ (2001) Differential compartmentation of o-diphenols and peroxidase activity in the inner sapwood of the Juglans nigra tree. Plant Physiol Biochem 39:473–477

    Article  CAS  Google Scholar 

  • Fang F, Tang K, Huang WD (2013) Changes of flavonol synthase and flavonol contents during grape berry development. Eur Food Res Technol 237:529–540

    Article  CAS  Google Scholar 

  • Fontes N, Gerós H, Delrot S (2011) Grape berry vacuole: a complex and heterogeneous membrane system specialized in the accumulation of solutes. Am J Enol Vitic 62:270–278

    Article  CAS  Google Scholar 

  • Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S (2008) Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233:83–93

    Article  CAS  PubMed  Google Scholar 

  • Fraignier MP, Michaux-Ferrière N, Kobrehel K (2000) Distribution of peroxidases in durum wheat (Triticum durum). Cereal Chem 77(1):11–17

    Article  CAS  Google Scholar 

  • García-Florenciano E, Calderón AA, Pedreño MA, Muñoz R, Ros Barceló A (1991) The vacuolar localization of basic isoperoxidases in grapevine suspension cell cultures and its significance in índole-3-acetic acid catabolism. Plant Growth Regul 10:125–138

    Article  Google Scholar 

  • García-Lara S, Arnason JT, Díaz-Pontones D, González E, Bergvinson DJ (2007) Soluble peroxidase activity in maize endosperm associated with maize weevil resistance. Crop Sci 47:1125–1130

    Article  Google Scholar 

  • Garrido I, Llerena JL, Valdés ME, Mancha LA, Uriarte D, del Henar Prieto M, Espinosa F (2014) Effects of defoliation and water restriction on total phenols and antioxidant activities in grapes during ripening. OENO One 48(1):31–42

    Article  CAS  Google Scholar 

  • Garrido I, Uriarte D, Hernández M, Llerena JL, Valdés ME, Espinosa F (2016) The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L., cv. Tempranillo) grown in semiarid region: effects of cluster thinning and water deficit. Int J Mol Sci 17(11):1923

    Article  CAS  PubMed Central  Google Scholar 

  • Gatto P, Vrhovsek U, Muth J, Segala C, Romualdi C, Fontana P, Pruefer D, Stefanini M, Moser C, Mattivi F, Velasco R (2008) Ripening and genotype control stilbene accumulation in healthy grapes. J Agric Food Chem 56(24):11773–11785

    Article  CAS  PubMed  Google Scholar 

  • Gómez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Clotilde Verriès C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A (2009) Grapevine MATE-type proteins act as vacuolar H+−dependent acylated anthocyanin transporters. Plant Physiol 150:402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewold E, Davies K (2008) Trafficking and sequestration of anthocyanins. Nat Prod Commun 3:1251–1258

    CAS  Google Scholar 

  • Grundhöfer P, Niemetz R, Schilling G, Gross GG (2001) Biosynthesis and sub-cellular distribution of hydrolyzable tannins. Phytochemistry 57:915–927

    Article  PubMed  Google Scholar 

  • Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis lambrusca). Plant J 49:579–591

    Article  CAS  PubMed  Google Scholar 

  • Hrazdina G, Jensen RA (1992) Spatial organization of enzymes in plant metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 43:241–267

    Article  CAS  Google Scholar 

  • Huang XM, Huang HB, Wang HC (2005) Cell walls of loosening skin in post-veraison grape berries lose structural polysaccharides and calcium while accumulate structural proteins. Sci Hortic 104:249–263

    Article  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Moon RC (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Bessis R, Gautheron B (1991) The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic 42:41–45

    CAS  Google Scholar 

  • Jeandet P, Douillet-Breuil A-C, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  CAS  PubMed  Google Scholar 

  • Kochhar S, Kochhar VK, Khanduja SD (1979) Changes in the pattern of isoperoxidases during maturation of grape berries cv Gulabi as affected by ethephon (2-chloethyl) phosponic acid. Am J Enol Vitic 30:275–277

    CAS  Google Scholar 

  • Li XB (1991) Molecular structure and physiological function of enzymes in plant cell wall. Plant Physiol Commun 27(4):246–252

    CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  CAS  PubMed  Google Scholar 

  • López-Miranda S, Hernández-Sánchez P, Serrano-Martínez A, Hellín P, Fenoll J, Núñez-Delicado E (2011) Effect of ripening on protein content and enzymatic activity of Crimson Seedless table grape. Food Chem 127(2):481–486

    Article  CAS  PubMed  Google Scholar 

  • Lucena MA, Romero-Aranda R, Mercado JA, Cuartero J, Valpuesta V, Quesada MA (2003) Structural and physiological changes in the roots of tomato plants over-expressing a basic peroxidase. Physiol Plant 118:422–429

    Article  CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenoloxidase in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Miesle TJ, Proctor A, Lagrimini LM (1991) Peroxidase activity, isoenzymes, and tissue localization in developing highbush blueberry fruit. J Am Soc Hortic Sci 116(5):827–830

    Article  CAS  Google Scholar 

  • Murata M, Tsurutani M, Hagiwara S, Homma S (1997) Subcellular location of polyphenol oxidase in apples. Biosci Biotechnol Biochem 61(9):1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Olah AF, Mueller WC (1981) Ultrastructural localization of oxidative and peroxidative activities in a carrot suspension cell culture. Protoplama 106(3):231–248

    Article  CAS  Google Scholar 

  • Ortega-García F, Blanco S, Peinado MA, Peragón J (2007) Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. ‘Picual’ trees during fruit ripening. Tree Physiol 28:45–54

    Article  Google Scholar 

  • Ortega-García F, Blanco S, Peinado MA, Peragón J (2008) Phenylalanine ammonia-lyase and phenolic compounds in leaves and fruits of Olea europaea L. cv. Picual during ripening. J Sci Food Agric 89:398–406

    Article  CAS  Google Scholar 

  • Pan QH, Wang L, Li JM (2009) Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Sci 176:360–366

    Article  CAS  Google Scholar 

  • Parish RW (1972) The intracellular location of phenol oxidases, peroxidase and phosphatases in the leaves of spinach beet (Beta vulgaris L. subspecies vulgaris). FEBS J 31(3):446–455

    CAS  Google Scholar 

  • Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1323–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera AP, Restrepo P, Narváez CE (2004) Polifenoloxidasa y peroxidasa de pulpa de uva Caimarona (Pourouma cecropiifolia). Rev Colomb Quim 33(1):57–66

    Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    Article  CAS  PubMed  Google Scholar 

  • Robinson DS (1991) Peroxidase and catalase. Elsevier Press, New York

    Google Scholar 

  • Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27:37–48

    Article  CAS  PubMed  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 25:23735–23740

    Article  CAS  Google Scholar 

  • Sherman TD, Vaughn KC, Duke SO (1991) A limited survey of the phylogenetic distribution of polyphenol oxidase. Phytochemistry 30(8):2499–2506

    Article  CAS  Google Scholar 

  • Singleton VL, Trousdale EK (1992) Anthocyanin-tannin interactions explaining differences in polymeric phenols between white and red wines. Am J Enol Vitic 43(1):63–70

    CAS  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004a) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117

    Article  CAS  PubMed  Google Scholar 

  • Thipyapong PJ, Melkoninan J, Wolfe DW, Steffens JC (2004b) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 164:693–703

    Article  CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance: a review. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • Valero E, Sánchez-Ferrer A, Varon R, Garcia-Carmona F (1989) Evolution of grape polyphenol oxidase activity and phenolic content during maturation and vinification. Vitis 28(2)

  • Vamos-Vigyazo L (1981) Polyphenol oxidase and peroxidase in fruits and vegetables. Crit Rev Food Sci Nutr 15:49–127

    Article  CAS  PubMed  Google Scholar 

  • Vaughn KC, Duke SO (1981) Tissue localization of polyphenol oxidase in Sorghum. Protoplasma 108(3):319–327

    Article  CAS  Google Scholar 

  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60:257–261

    Article  CAS  Google Scholar 

  • Vaughn KC, Lax AR, Duke SO (1988) Polyphenol oxidase: the chloroplast oxidase with no established function. Physiol Plant 72:659–796

    Article  CAS  Google Scholar 

  • Versari A, Parpinello GP, Tronielli GB, Ferrarini R, Giulivo C (2001) Stilbene compounds and stilbene synthase expression during ripening, wilting and UV treatment in grape cv. Corvina. J Agric Food Chem 49:5531–5536

    Article  CAS  PubMed  Google Scholar 

  • Walker JRL, Ferrar PH (1998) Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnol Genet Eng Rev 15(1):457–498

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Tang K, Yang HR, Wen PF, Zhang P, Wang HL, Huang WD (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem 48:142–152

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Plant Physiol 107:142–149

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

During this work, M.E.M.C was a recipient of a PhD studentship from the Junta de Extremadura (PD12106). We also greatly thank Dr. Roque Bru (Departamento de Agroquímica y Bioquímica, University of Alicante, Spain) for the generous gifts of rabbit anti-PPO polyclonal antibody.

Funding

This work was supported by grants from Junta de Extremadura (GR15158 and AGA001), Fondo Social Europeo and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-FEDER RTA-2012-00029-C01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Francisco-Morcillo.

Additional information

Handling Editor: Hanns H. Kassemeyer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molero de Ávila, M.E., Alarcón, M.V., Uriarte, D. et al. Histochemical and immunohistochemical analysis of enzymes involved in phenolic metabolism during berry development in Vitis vinifera L.. Protoplasma 256, 25–38 (2019). https://doi.org/10.1007/s00709-018-1278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1278-1

Keywords

Navigation