Protoplasma

pp 1–22 | Cite as

Starch formation inside plastids of higher plants

Review
  • 70 Downloads

Abstract

Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.

Keywords

Amylopectin Amyloplasts Amylose Cereals Chloroplasts Debranching enzymes Endosperm Granule morphology Malto-oligosaccharides Phytoglycogen Plastids Starch Starch synthase Starch branching enzyme Starch structure models 

Abbreviations

ADP-Glc

ADP-glucose

AFM

Atomic force microscopy

AGPase

ADP-Glc pyrophosphorylase

ae

amylose extender

CBM

Carbohydrate binding module

13C-CP/MAS NMR

Cross polarization/magic angle spinning nuclear magnetic resonance

DAP

Days after pollination

DBE

Debranching enzyme

D-enzyme

Disproportionating enzyme

DP

Degree of polymerization

ESV

Early starvation

GBSSI

Granule-bound starch synthase

GH

Glycoside hydrolase family

Glc

Glucose

Glc1P

α-D-glucose 1-phosphate

GWD

Glucan water dikinase

ISA

Isoamylase

LDA

Limit dextrinase

LSF

Like Sex4

MOS

Malto-oligosaccharides

PTST

Protein targeting to starch

PWD

Phospho-glucan water dikinase

SAXS

Small angle X-ray scattering

SBE

Starch branching enzyme

SDS-PAGE

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SP

Starch phosphorylase

SS

Starch synthase

TEM

Transmission electron microscopy

Notes

Acknowledgements

The authors gratefully acknowledge funding from a Natural Sciences and Engineering Research Council of Canada Discovery Grant (435781).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Ahmed Z, Tetlow IJ, Ahmed R et al (2015) Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of a and B granules. Plant Sci 233:95–106.  https://doi.org/10.1016/j.plantsci.2014.12.016 PubMedCrossRefGoogle Scholar
  2. Badenhuizen NP (1936) Abhanlung zur physikalischen Chemie der Starke und der Brotbereitung. XXV. Weitere Beobachtungen über die Blöckchenstruktur der Stärkekörner. Z Phys Chem A 175:383–395Google Scholar
  3. Baker AA, Miles MJ, Helbert W (2001) Internal structure of the starch granule revealed by AFM. Carbohydr Res 330:249–256PubMedCrossRefGoogle Scholar
  4. Baldwin PM, Frazier RA, Adler J et al (1996) Surface imaging of thermally-sensitive particulate and fibrous materials with the atomic force microscope: a novel sample preparation method. J Microsc 184:75–80CrossRefGoogle Scholar
  5. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233.  https://doi.org/10.1146/annurev.arplant.54.031902.134927 PubMedCrossRefGoogle Scholar
  6. Ball S, Guan H, James M et al (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86:349–352.  https://doi.org/10.1016/S0092-8674(00)80107-5 PubMedCrossRefGoogle Scholar
  7. Ball S, Colleoni C, Cenci U et al (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801.  https://doi.org/10.1093/jxb/erq411 PubMedCrossRefGoogle Scholar
  8. Ballicora MA, Laughlin MJ, Fu Y et al (1995) Adenosine 5′ -diphosphate-glucose pyrophosphorylase from potato tuber. Significance of the N terminus of the small subunit for catalytic properties and heat stability. Plant Physiol 109:245–251PubMedPubMedCentralCrossRefGoogle Scholar
  9. Banks W, Greenwood CT, Muir D (1974) Studies on starches of high amylose-content. Stärke 9:289–328.  https://doi.org/10.1016/S0008-6215(00)82045-5 CrossRefGoogle Scholar
  10. Baunsgaard L, Lütken H, Mikkelsen R et al (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J 41:595–605.  https://doi.org/10.1111/j.1365-313X.2004.02322.x PubMedCrossRefGoogle Scholar
  11. Beckles DM, Smith AM, ap Rees T (2001) A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol 125:818–882.  https://doi.org/10.1104/pp.125.2.818 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Benmoussa M, Hamaker BR, Huang CP et al (2010) Elucidation of maize endosperm starch granule channel proteins and evidence for plastoskeletal structures in maize endosperm amyloplasts. J Cereal Sci 52:22–29.  https://doi.org/10.1016/j.jcs.2010.02.013 CrossRefGoogle Scholar
  13. Bertoft E (2013) On the building block and backbone concepts of amylopectin structure. Cereal Chem 90:294–311CrossRefGoogle Scholar
  14. Bertoft E (2017) Understanding starch structure : recent progress. Agronomy 7:56.  https://doi.org/10.3390/agronomy7030056 CrossRefGoogle Scholar
  15. Bettge AD, Giroux MJ, Morris CF (2000) Susceptibility of waxy starch granules to mechanical damage. Cereal Chem 77:750–753CrossRefGoogle Scholar
  16. Blauth SL, Yao Y, Klucinec JD et al (2001) Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol 125:1396–1405.  https://doi.org/10.1104/pp.125.3.1396 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blauth SL, Kim KN, Klucinec J et al (2002) Identification of mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Mol Biol 48:287–297.  https://doi.org/10.1023/A:1013335217744 PubMedCrossRefGoogle Scholar
  18. Blennow A, Engelsen SB (2010) Helix-breaking news: fighting crystalline starch energy deposits in the cell. Trends Plant Sci 15:236–240.  https://doi.org/10.1016/j.tplants.2010.01.009 PubMedCrossRefGoogle Scholar
  19. Blennow A, Engelsen SB, Munck L et al (2000) Starch molecular structure and phosphorylation investigated by a combined chromatographic and chemometric approach. Carbohydr Polym 41:163–174.  https://doi.org/10.1016/S0144-8617(99)00082-X CrossRefGoogle Scholar
  20. Bogracheva TYA, Morris VJ, Ring SG et al (1998) The granular structure of C-type starch and its role in gelatinization. Biopolymers 45:323–332CrossRefGoogle Scholar
  21. Borghi M, Fernie AR (2017) Floral metabolism of sugars and amino acids: implications for pollinators’ preferences and seed and fruit set. Plant Physiol 175:1510–1524.  https://doi.org/10.1104/pp.17.01164 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Borovsky D, Smith EE, Whelan WJ et al (1979) The mechanism of Q-enzyme action and its influence on the structure of amylopectin. Arch Biochem Biophys 198:627–631.  https://doi.org/10.1016/0003-9861(79)90540-X PubMedCrossRefGoogle Scholar
  23. Bowsher CG, Scrase-Field EFAL, Esposito S et al (2007) Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. J Exp Bot 58:1321–1332.  https://doi.org/10.1093/jxb/erl297 PubMedCrossRefGoogle Scholar
  24. Boyer CD, Preiss J (1981) Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol 67:1141–1145.  https://doi.org/10.1104/pp.67.6.1141 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Boyer L, Roussel X, Courseaux A et al (2016) Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans. Plant Cell Environ 39:1432–1447.  https://doi.org/10.1111/pce.12702 PubMedCrossRefGoogle Scholar
  26. Brauner K, Hörmiller I, Nägele T, Heyer AG (2014) Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana. Plant J 79:82–91.  https://doi.org/10.1111/tpj.12555 PubMedCrossRefGoogle Scholar
  27. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266.  https://doi.org/10.1016/j.tplants.2007.04.003 PubMedCrossRefGoogle Scholar
  28. Bresolin NS, Li Z, Kosar-Hashemi B et al (2006) Characterisation of disproportionating enzyme from wheat endosperm. Planta 224:20–31.  https://doi.org/10.1007/s00425-005-0187-7 PubMedCrossRefGoogle Scholar
  29. Briarty LG, Hughes CE, Evers AD (1979) The developing endosperm of wheat – a stereological analysis. Ann Bot 44:641–658CrossRefGoogle Scholar
  30. Brummell DA, Watson LM, Zhou J et al (2015) Overexpression of STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the physicochemical properties of starch from potato tuber. BMC Biotechnol 15:28.  https://doi.org/10.1186/s12896-015-0143-y PubMedPubMedCentralCrossRefGoogle Scholar
  31. Brust H, Orzechowski S, Fettke J et al (2013) Starch synthesizing reactions and paths: in vitro and in vivo studies. J Appl Glycosci 60:3–20CrossRefGoogle Scholar
  32. Brust H, Lehmann T, D’Hulst C, Fettke J (2014) Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and BEs results in glucans with polymodal chain length distribution similar to amylopectin. PLoS One 9:e102364.  https://doi.org/10.1371/journal.pone.0102364 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Buléon A, Pontoire B, Riekel C et al (1997) Crystalline ultrastructure of starch granules revealed by synchrotron radiation microdiffraction mapping. Macromolecules 30:3952–3954CrossRefGoogle Scholar
  34. Buléon A, Colonna P, Planchot V et al (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedCrossRefGoogle Scholar
  35. Burr B, Nelson OE (1975) Maize α-glucan phosphorylase. Eur J Biochem 56:539–546PubMedCrossRefGoogle Scholar
  36. Burton RA, Jenner H, Carrangis L et al (2002) Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J 31:97–112.  https://doi.org/10.1046/j.1365-313X.2002.01339.x PubMedCrossRefGoogle Scholar
  37. Butardo VM, Fitzgerald MA, Bird AR et al (2011) Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing. J Exp Bot 62:4927–4941.  https://doi.org/10.1093/jxb/err188 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cakir B, Shiraishi S, Tuncel A et al (2016) Analysis of the rice ADPglucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch. Plant Physiol 170:1271–1283.  https://doi.org/10.1104/pp.15.01911 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cao H, Imparl-Radosevich J, Guan H et al (1999) Identification of the soluble starch synthase activities of maize endosperm. Plant Physiol 120:205–216.  https://doi.org/10.1104/pp.120.1.205 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cao H, James M, Myers A (2000) Purification and characterization of soluble starch synthases from maize endosperm. Arch Biochem Biophys 373:135–146PubMedCrossRefGoogle Scholar
  41. Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis - implications for the starch-statolith theory of gravity sensing. Planta 177:185–197.  https://doi.org/10.1007/BF00392807 CrossRefPubMedGoogle Scholar
  42. Caspar T, Huber SC, Somerville C (1985) Alterations in growth, photosynthesis, and respiration in a Starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast Phosphoglucomutase activity. Plant Physiol 79:11–17.  https://doi.org/10.1104/pp.79.1.11 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cassidy A, Bingham S, Cummings JH (1994) Starch intake and colorectal cancer risk: an international comparison. Br J Cancer 69:937–942.  https://doi.org/10.1038/bjc.1994.181 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cenci U, Chabi M, Ducatez M et al (2013) Convergent evolution of polysaccharide debranching defines a common mechanism for starch accumulation in cyanobacteria and plants. Plant Cell 25:3961–3975.  https://doi.org/10.1105/tpc.113.118174 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cenci U, Nitschke F, Steup M et al (2014) Transition from glycogen to starch metabolism in archaeplastida. Trends Plant Sci 19:18–28.  https://doi.org/10.1016/j.tplants.2013.08.004 PubMedCrossRefGoogle Scholar
  46. Chen HM, Chang SC, Wu CC et al (2002) Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114:506–515.  https://doi.org/10.1034/j.1399-3054.2002.1140402.x PubMedCrossRefGoogle Scholar
  47. Colleoni C, Dauvillée D, Mouille G et al (1999) Biochemical characterization of the Chlamydomonas reinhardtii alpha-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol 120:1005–1014PubMedPubMedCentralCrossRefGoogle Scholar
  48. Colleoni C, Myers AM, James MG (2003) One- and two-dimensional native PAGE activity gel analysis of maize endosperm proteins reveal functional interactions between specific starch metabolizing enzymes. J Appl Glycosci 50:207–212CrossRefGoogle Scholar
  49. Copeland L, Hardy K (2018) Archaeological starch. Agronomy 8:4.  https://doi.org/10.3390/agronomy8010004 CrossRefGoogle Scholar
  50. Coppin A, Varré JS, Lienard L et al (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267.  https://doi.org/10.1007/s00239-004-0185-6 PubMedCrossRefGoogle Scholar
  51. Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137.  https://doi.org/10.1007/s004250050383 PubMedCrossRefGoogle Scholar
  52. Correns C (1901) Bastarde zwischen maisrassen, mit besonder Berucksichtung der Xenien. Bibl Bot 53:1–161Google Scholar
  53. Critchley JH, Zeeman SC, Takaha T et al (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J 26:89–100.  https://doi.org/10.1046/j.1365-313X.2001.01012.x PubMedCrossRefGoogle Scholar
  54. Crofts N, Nakamura Y, Fujita N (2017) Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci 262:1–8.  https://doi.org/10.1016/j.plantsci.2017.05.007 PubMedCrossRefGoogle Scholar
  55. Crumpton-Taylor M, Grandison S, Png KMY et al (2012) Control of starch granule numbers in Arabidopsis chloroplasts. Plant Physiol 158:905–916.  https://doi.org/10.1104/pp.111.186957 PubMedCrossRefGoogle Scholar
  56. Cuesta-Seijo JA, Nielsen MM, Ruzanski C et al (2016) In vitro biochemical characterization of all barley endosperm starch synthases. Front Plant Sci 6:1–17.  https://doi.org/10.3389/fpls.2015.01265 CrossRefGoogle Scholar
  57. Cuesta-Seijo JA, Ruzanski C, Krucewicz K et al (2017) Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 12:1–25.  https://doi.org/10.1371/journal.pone.0175488 CrossRefGoogle Scholar
  58. D’Hulst C, Mérida Á (2010) The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments. New Phytol 188:13–21.  https://doi.org/10.1111/j.1469-8137.2010.03361.x PubMedCrossRefGoogle Scholar
  59. Dauvillée D (2001) Biochemical characterization of wild-type and mutant Isoamylases of Chlamydomonas reinhardtii supports a function of the multimeric enzyme Organization in Amylopectin Maturation. Plant Physiol 125:1723–1731.  https://doi.org/10.1104/pp.125.4.1723 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dauvillée D, Chochois V, Steup M et al (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48:274–285.  https://doi.org/10.1111/j.1365-313X.2006.02870.x PubMedCrossRefGoogle Scholar
  61. De Pater S, Caspers M, Kottenhagen M et al (2006) Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant Biotechnol J 4:123–134PubMedCrossRefGoogle Scholar
  62. Delatte T, Trevisan M, Parker ML et al (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J 41:815–830.  https://doi.org/10.1111/j.1365-313X.2005.02348.x PubMedCrossRefGoogle Scholar
  63. Delatte T, Umhang M, Trevisan M et al (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. J Biol Chem 281:12050–12059.  https://doi.org/10.1074/jbc.M513661200 PubMedCrossRefGoogle Scholar
  64. Delrue B, Fontaine T, Routier F et al (1992) Waxy Chlamydomonas reinhardtii: Monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol 174:3612–3620.  https://doi.org/10.1128/jb.174.11.3612-3620.1992 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Denyer K, Sidebottom C, Hylton CM, Smith AM (1993) Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J 4:191–198PubMedCrossRefGoogle Scholar
  66. Denyer K, Clarke B, Hylton C et al (1996a) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10:1135–1143CrossRefGoogle Scholar
  67. Denyer K, Dunlap F, Thorbjørnsen T et al (1996b) The major form of ADP-glucose Pyrophosphorylase in maize endosperm 1s extra-Plastidial. Plant Physiol 112:779–785.  https://doi.org/10.1104/pp.112.2.779 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylose synthesis. J Plant Physiol 158:479–487.  https://doi.org/10.1078/0176-1617-00360 CrossRefGoogle Scholar
  69. Dinges JR, Colleoni C, Myers AM et al (2001) Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiol 125:1406–1418.  https://doi.org/10.1104/pp.125.3.1406 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Dinges JR, Colleoni C, James MG et al (2003) Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15:666–680.  https://doi.org/10.1105/tpc.007575 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Dong X, Zhang D, Liu J et al (2015) Plastidial Disproportionating enzyme participates in starch synthesis in Rice endosperm by transferring Maltooligosyl groups from amylose and amylopectin to amylopectin. Plant Physiol 169:2496–2512.  https://doi.org/10.1104/pp.15.01411 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Drummond GS, Smith EE, Whelan WJ (1972) Purification and properties of potato: α-1,4-glucan 6-glycosyltransferase (Q-enzyme). Eur J Biochem 26:168–176.  https://doi.org/10.1111/j.1432-1033.1972.tb01753.x PubMedCrossRefGoogle Scholar
  73. Dumez S, Wattebled F, Dauvillée D et al (2006) Mutants of Arabidopsis lacking starch branching enzyme II substitute Plastidial starch synthesis by cytoplasmic maltose accumulation. Plant Cell 18:2694–2709.  https://doi.org/10.1105/tpc.105.037671 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Duwenig E, Steup M, Kossmann J (1997) Induction of genes encoding plastidic phosphorylase from spinach (Spinacia oleracea L.) and potato (Solanum tuberosum L.) by exogenously supplied carbohydrates in excised leaf discs. Planta 203:111–120.  https://doi.org/10.1007/s004250050171 PubMedCrossRefGoogle Scholar
  75. Edwards A, Fulton DC, Hylton CM et al (1999) A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J 17:251–261.  https://doi.org/10.1046/j.1365-313X.1999.00371.x CrossRefGoogle Scholar
  76. Ellis RP, Cochrane MP, Dale MFB et al (1998) Starch production and industrial use. J Sci Food Agric 77:289–311.  https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D CrossRefGoogle Scholar
  77. Facon M, Lin Q, Azzaz AM et al (2013) Distinct functional properties of Isoamylase-type starch debranching enzymes in monocot and dicot leaves. Plant Physiol 163:1363–1375.  https://doi.org/10.1104/pp.113.225565 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Fannon JE, Gray JA, Gunawan N et al (2004) Heterogeneity of starch granules and the effect of granule channelization on starch modification. Cellulose 11:247–254.  https://doi.org/10.1023/B:CELL.0000025399.66700.d7 CrossRefGoogle Scholar
  79. Fisher DK, Gao M, Kim KN et al (1996) Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol 110:611–619.  https://doi.org/10.1104/pp.110.2.611 PubMedPubMedCentralCrossRefGoogle Scholar
  80. French D (1972) Fine structure of starch and its relationship to the organization of starch granules. J Jpn Soc Starch Sci 19:8–25CrossRefGoogle Scholar
  81. French D (1984) Organization of starch granules. In: Whistler RL, BeMiller JN, Paschall EF (eds) Starch: Chemistry and Technology. Academic Press, Orlando, pp 183–237CrossRefGoogle Scholar
  82. Fu Y, Ballicora MA, Leykam JF et al (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045–25052PubMedCrossRefGoogle Scholar
  83. Fujita N, Taira T (1998) A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat (Triticum monococcum L.). Planta 207:125–132.  https://doi.org/10.1007/s004250050464 PubMedCrossRefGoogle Scholar
  84. Fujita N, Yoshida M, Kondo T et al (2007) Characterization of SSIIIa-deficient mutants of Rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the Rice endosperm. Plant Physiol 144:2009–2023.  https://doi.org/10.1104/pp.107.102533 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Fujita N, Toyosawa Y, Utsumi Y et al (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023.  https://doi.org/10.1093/jxb/ern349 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Furukawa K, Tagaya M, Tanizawa K, Fukui T (1993) Role of the conserved Lys-X-Gly-Gly sequence at the ADP-glucose-binding site in Escherichia coli glycogen synthase. J Biol Chem 268:23837–23842PubMedGoogle Scholar
  87. Gallant DJ, Bouchet B, Buléon A et al (1992) Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr 46:S3–S16PubMedGoogle Scholar
  88. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191.  https://doi.org/10.1016/S0144-8617(97)00008-8 CrossRefGoogle Scholar
  89. Gámez-Arjona FM, De La Concepción JC, Raynaud S et al (2014a) Arabidopsis thaliana plastoglobule-associated fibrillin 1a interacts with fibrillin 1b in vivo. FEBS Lett 588:2800–2804.  https://doi.org/10.1016/j.febslet.2014.06.024 PubMedCrossRefGoogle Scholar
  90. Gámez-Arjona FM, Raynaud S, Ragel P et al (2014b) Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis. Plant J 80:305–316.  https://doi.org/10.1111/tpj.12633 PubMedCrossRefGoogle Scholar
  91. Gao M, Fisher DK, Kim K-N et al (1996) Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol Biol 30:1223–1232.  https://doi.org/10.1007/BF00019554 PubMedCrossRefGoogle Scholar
  92. Gao M, Fisher DK, Kim KN et al (1997) Independent genetic control of maize starch-branching enzymes IIa and IIb. Isolation and characterization of a Sbe2a cDNA. Plant Physiol 114:69–78.  https://doi.org/10.1104/pp.114.1.69 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155:1566–1577.  https://doi.org/10.1104/pp.110.170399 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ghosh H, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase: a regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241:4491–4504PubMedGoogle Scholar
  95. Gidley M, Bociek S (1985) Molecular organization in starches: a 13C CP/MAS NMR study. J Am Chem Soc 107:7040–7044CrossRefGoogle Scholar
  96. Gidley M, Bulpin P (1987) Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr Res 161:291–300CrossRefGoogle Scholar
  97. Glaring MA, Koch CB, Blennow A (2006) Genotype-specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach. Biomacromolecules 7:2310–2320.  https://doi.org/10.1021/bm060216e PubMedCrossRefGoogle Scholar
  98. Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci U S A 107:9458–9463.  https://doi.org/10.1073/pnas.0914299107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.0914299107 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Griffiths CA, Paul MJ, Foyer CH (2016) Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim Biophys Acta Bioenerg 1857:1715–1725.  https://doi.org/10.1016/j.bbabio.2016.07.007 CrossRefGoogle Scholar
  100. Grimaud F, Rogniaux H, James MG et al (2008) Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. J Exp Bot 59:3395–3406.  https://doi.org/10.1093/jxb/ern198 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Gross P, ap Rees T (1986) Alkaline inorganic pyrophosphatase and starch synthesis in amyloplasts. Planta 167:140–145.  https://doi.org/10.1007/BF00446381 PubMedCrossRefGoogle Scholar
  102. Hanashiro I, Itoh K, Kuratomi Y et al (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol 49:925–933.  https://doi.org/10.1093/pcp/pcn066 PubMedCrossRefGoogle Scholar
  103. Hawker JS, Ozbun JL, Ozaki H et al (1974) Interaction of spinach leaf adenosine diphosphate glucose α-1,4-glucan α-4-glucosyl transferase and α-1,4-glucan, α-1,4-glucan-6-glycosyl transferase in synthesis of branched α-glucan. Arch Biochem Biophys 160:530–551.  https://doi.org/10.1016/0003-9861(74)90430-5 PubMedCrossRefGoogle Scholar
  104. Hennen-Bierwagen TA, Liu F, Marsh RS et al (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908.  https://doi.org/10.1104/pp.108.116285 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Hennen-Bierwagen TA, Lin Q, Grimaud F et al (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize Amyloplasts. Plant Physiol 149:1541–1559.  https://doi.org/10.1104/pp.109.135293 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Higgins JE, Kosar-Hashemi B, Li Z et al (2013) Characterization of starch phosphorylases in barley grains. J Sci Food Agric 93:2137–2145.  https://doi.org/10.1002/jsfa.6019 PubMedCrossRefGoogle Scholar
  107. Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectin, and its significance. Carbohydr Res 147:342–347CrossRefGoogle Scholar
  108. Hizukuri S, Tabata S, Kagoshima et al (1970) Studies on starch phosphate part 1. Estimation of glucose-6-phosphate residues in starch and the presence of other bound phosphate(s). Stärke 22:338–343.  https://doi.org/10.1002/star.19700221004 CrossRefGoogle Scholar
  109. Hizukuri S, Takeda Y, Yasuda M et al (1981) Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr Res 94:205–213.  https://doi.org/10.1016/S0008-6215(00)80718-1 CrossRefGoogle Scholar
  110. Hizukuri S, Kaneko T, Takeda Y (1983) Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. BBA Gen Subj 760:188–191.  https://doi.org/10.1016/0304-4165(83)90142-3 CrossRefGoogle Scholar
  111. Hizukuri S, Takeda Y, Maruta N et al (1989) Molecular structures of rice starch. Carbohydr Res 189:227–235.  https://doi.org/10.1016/0008-6215(89)84099-6 CrossRefGoogle Scholar
  112. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267CrossRefGoogle Scholar
  113. Huang B, Hennen-Bierwagen T, Myers AM (2014) Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo and leaf. Plant Physiol 164:596–611PubMedCrossRefGoogle Scholar
  114. Hussain H, Mant A, Seale R et al (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15:133–149.  https://doi.org/10.1105/tpc.006635 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Hwang SK, Nagai Y, Kim D et al (2008) Direct appraisal of the potato tuber ADP-glucose pyrophosphorylase large subunit in enzyme function by study of a novel mutant form. J Biol Chem 283:6640–6647.  https://doi.org/10.1074/jbc.M707447200 PubMedCrossRefGoogle Scholar
  116. Hwang SK, Nishi A, Satoh H et al (2010) Rice endosperm-specific plastidial α-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Arch Biochem Biophys 495:82–92.  https://doi.org/10.1016/j.abb.2009.12.023 PubMedCrossRefGoogle Scholar
  117. Hwang SK, Koper K, Satoh H et al (2016) Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. J Biol Chem 291:19994–20007.  https://doi.org/10.1074/jbc.M116.735449 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Iglesias AA, Barry GF, Meyer C et al (1993) Expression of the potato tuber ADP-glucose pyrophosphorylase in Escherichia coli. J Biol Chem 268:1081–1086PubMedGoogle Scholar
  119. Imberty A, Buléon A, Tran V et al (1991) Recent advances in knowledge of starch structure. Stärke 43:375–384.  https://doi.org/10.1002/star.19910431002 CrossRefGoogle Scholar
  120. James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  121. Jane J-L, Shen JJ (1993) Internal structure of the potato starch granule revealed by chemical gelatinization. Carbohydr Res 247:279–290CrossRefGoogle Scholar
  122. Jane J-L, Kasemsuwan T, Leas S et al (1994) Anthology of starch granule morphology by scanning Electron microscopy. Stärke 46:121–129.  https://doi.org/10.1002/star.19940460402 CrossRefGoogle Scholar
  123. Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17:315–321PubMedCrossRefGoogle Scholar
  124. Jenkins PJ, Cameron RE, Donald AM (1993) A universal feature in the structure of starch granules from different botanical sources. Stärke 45:417–420.  https://doi.org/10.1002/star.19930451202 CrossRefGoogle Scholar
  125. Jobling SA, Schwall GP, Westcott RJ et al (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE a. Plant J 18:163–171.  https://doi.org/10.1046/j.1365-313X.1999.00441.x PubMedCrossRefGoogle Scholar
  126. Johnson PE, Patron NJ, Bottrill A et al (2003) A low-starch barley mutant, Risø 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol 131:684–696PubMedPubMedCentralCrossRefGoogle Scholar
  127. Kirchberger S, Tjaden J, Ekkehard Neuhaus H (2008) Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. Plant J 56:51–63.  https://doi.org/10.1111/j.1365-313X.2008.03583.x PubMedCrossRefGoogle Scholar
  128. Kiss JZ, Guisinger MM, Miller AJ, Stackhouse KS (1997) Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol 38:518–525.  https://doi.org/10.1093/oxfordjournals.pcp.a029199 PubMedCrossRefGoogle Scholar
  129. Kleczkowski LA (1996) Back to the drawing board: redefining starch synthesis in cereals. Trends Plant Sci 1:363–364Google Scholar
  130. Kleczkowski LA, Villand P, Lüthi E et al (1993) Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol 101:179–186PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kotting O, Santelia D, Edner C et al (2009) STARCH-EXCESS4 is a Laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346.  https://doi.org/10.1105/tpc.108.064360 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Krishnan A, Kumaraswamy GK, Vinyard DJ et al (2015) Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant J 81:947–960.  https://doi.org/10.1111/tpj.12783 PubMedCrossRefGoogle Scholar
  133. Kubo A, Rahman S, Utsumi Y et al (2005) Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiol 137:43–56.  https://doi.org/10.1104/pp.104.051359 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Kubo A, Colleoni C, Dinges JR et al (2010) Functions of Heteromeric and Homomeric Isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiol 153:956–969.  https://doi.org/10.1104/pp.110.155259 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lappe RR, Baier JW, Boehlein SK et al (2018) Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proc Natl Acad Sci USA 115:E24–E33.  https://doi.org/10.1073/pnas.1715668115 PubMedCrossRefGoogle Scholar
  136. Larsson CT, Hofvander P, Khoshnoodi J et al (1996) Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Sci 117:9–16.  https://doi.org/10.1016/0168-9452(96)04408-1 CrossRefGoogle Scholar
  137. Lee SK, Hwang SK, Han M et al (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65:531–546.  https://doi.org/10.1007/s11103-007-9153-z PubMedCrossRefGoogle Scholar
  138. Lee S-K, Eom J-S, Hwang S-K et al (2016) Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot 67:5557–5569PubMedPubMedCentralCrossRefGoogle Scholar
  139. Leterrier M, Holappa LD, Broglie KE et al (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98.  https://doi.org/10.1186/1471-2229-8-98 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lin Q, Huang B, Zhang M et al (2012) Functional interactions between starch synthase III and Isoamylase-type starch-debranching enzyme in maize endosperm. Plant Physiol 158:679–692.  https://doi.org/10.1104/pp.111.189704 PubMedCrossRefGoogle Scholar
  141. Lin Q, Facon M, Putaux JL et al (2013) Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf. New Phytol. 200:1009–1021.  https://doi.org/10.1111/nph.12446 PubMedCrossRefGoogle Scholar
  142. Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Stärke 56:89–99.  https://doi.org/10.1002/star.200300218 CrossRefGoogle Scholar
  143. Liu F, Makhmoudova A, Lee EA et al (2009) The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot 60:4423–4440.  https://doi.org/10.1093/jxb/erp297 PubMedCrossRefGoogle Scholar
  144. Liu F, Ahmed Z, Lee EA et al (2012a) Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. J Exp Bot 63:1167–1183.  https://doi.org/10.1093/jxb/err341 PubMedCrossRefGoogle Scholar
  145. Liu F, Romanova N, Lee EA et al (2012b) Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem J 448:373–387.  https://doi.org/10.1042/BJ20120573 PubMedCrossRefGoogle Scholar
  146. Liu DR, Huang WX, Cai XL (2013) Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. Plant Sci 210:141–150.  https://doi.org/10.1016/j.plantsci.2013.05.019 PubMedCrossRefGoogle Scholar
  147. Lloyd JR, Kossmann J (2015) Transitory and storage starch metabolism: two sides of the same coin? Curr Opin Biotechnol 32:143–148.  https://doi.org/10.1016/j.copbio.2014.11.026 PubMedCrossRefGoogle Scholar
  148. Lockyer S, Nugent AP (2017) Health effects of resistant starch. Br Nutr Found Nutr Bull 42:10–41CrossRefGoogle Scholar
  149. Lomako J, Lomako WM, Kirkman BR et al (1994) The role of phosphate in muscle glycogen. Biofactors 4:167–171PubMedGoogle Scholar
  150. Lu K-J, Pfister B, Jenny C et al (2018) Distinct functions of STARCH SYNTHASE 4 domains in starch granule formation. Plant Physiol 176:566–581.  https://doi.org/10.1104/pp.17.01008 PubMedCrossRefGoogle Scholar
  151. Lunn JE, Feil R, Hendriks JHM et al (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148.  https://doi.org/10.1042/BJ20060083 PubMedPubMedCentralCrossRefGoogle Scholar
  152. MacNeill GJ, Mehrpouyan S, Minow MAA et al (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68:4433–4453.  https://doi.org/10.1093/jxb/erx291 PubMedCrossRefGoogle Scholar
  153. Maddelein ML, Libessart N, Bellanger F, Delrue B, D’Hulst C, Ball S (1994) Toward an understanding of the biogenesis of the starch granule: determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J Biol Chem 269:25150–25157PubMedGoogle Scholar
  154. Malinova I, Mahlow S, Alseekh S et al (2014) Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism. Plant Physiol 164:907–921PubMedCrossRefGoogle Scholar
  155. Manners DJ, Matheson NK (1981) The fine structure of amylopectin. Carbohydr Res 90:99–110CrossRefGoogle Scholar
  156. Marchand I, Chorneyko K, Tarnopolsky M et al (2002) Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol 93:1598–1607.  https://doi.org/10.1152/japplphysiol.00585.2001 PubMedCrossRefGoogle Scholar
  157. Mizuno K, Kawasaki T, Shimada H et al (1993) Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem 268:19084–19091PubMedGoogle Scholar
  158. Møller MS, Henriksen A, Svensson B (2016) Structure and function of α-glucan debranching enzymes. Cell Mol Life Sci 73:2619–2641PubMedCrossRefGoogle Scholar
  159. Morris D, Morris C (1939) Glycogen in the seed of Zea mays. J Biol Chem 130:535–544Google Scholar
  160. Morrison WR (1988) Lipids in cereal starches: a review. J Cereal Sci 8:1–15CrossRefGoogle Scholar
  161. Morrison WR, Law RV, Snape CE (1993) Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches. J Cereal Sci 18:107–109CrossRefGoogle Scholar
  162. Mouille G, Maddelein M-L, Libessart N et al (1996) Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8:1353–1366.  https://doi.org/10.1105/tpc.8.8.1353 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Mu-Forster C, Huang R, Powers JR et al (1996) Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthase I and starch branching enzyme II. Plant Physiol 111:821–829PubMedPubMedCentralCrossRefGoogle Scholar
  164. Nakamura Y (2018) Rice starch biotechnology: rice endosperm as a model of cereal endosperms. Stärke 70:1–20CrossRefGoogle Scholar
  165. Nakamura T, Vrinten P, Hayakawa K, Ikeda J (1998) Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol 118:451–459.  https://doi.org/10.1104/pp.118.2.451 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Nakamura Y, Sakurai A, Inaba Y et al (2002) The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Stärke 54:117–131.  https://doi.org/10.1002/1521-379X(200204)54:3/4<117::AID-STAR117>3.0.CO;2-2 CrossRefGoogle Scholar
  167. Nakamura Y, Ono M, Utsumi C et al (2012) Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant Cell Physiol 53:869–878.  https://doi.org/10.1093/pcp/pcs030 PubMedCrossRefGoogle Scholar
  168. Niittylä T, Messerli G, Trevisan M et al (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89.  https://doi.org/10.1126/science.1091811 PubMedCrossRefGoogle Scholar
  169. Nishi A, Nakamura Y, Tanaka N et al (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472.  https://doi.org/10.1104/pp.010127.BEII PubMedPubMedCentralCrossRefGoogle Scholar
  170. Nitschke F, Wang P, Schmieder P et al (2013) Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy lafora disease. Cell Metab 17:756–767.  https://doi.org/10.1016/j.cmet.2013.04.006 PubMedCrossRefGoogle Scholar
  171. Nougué O, Corbi J, Ball SG et al (2014) Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway. BMC Evol Biol 14:1–16.  https://doi.org/10.1186/1471-2148-14-103 CrossRefGoogle Scholar
  172. O’Neill EC, Field RA (2015) Underpinning starch biology with in vitro studies on carbohydrate-active enzymes and biosynthetic glycomaterials. Front Bioeng Biotechnol 3:1–6.  https://doi.org/10.3389/fbioe.2015.00136 CrossRefGoogle Scholar
  173. Ohtani T, Yoshino T, Hagiwara S et al (2000) High-resolution imaging of starch granule structure using atomic force microscopy. Stärke 52:150–153CrossRefGoogle Scholar
  174. Okamura M, Hirose T, Hashida Y et al (2017) Suppression of starch accumulation in “sugar leaves” of rice affects plant productivity under field conditions. Plant Prod Sci 20:102–110.  https://doi.org/10.1080/1343943X.2016.1259958 CrossRefGoogle Scholar
  175. Oostergetel GT, van Bruggen EFJ (1993) The crystalline domains in potato starch granules are arranged in a helical fashion. Carbohydr Polym 21:7–12CrossRefGoogle Scholar
  176. Osteryoung KW, Pyke K (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65:443–472PubMedCrossRefGoogle Scholar
  177. O'Sullivan AC, Pérez S (1999) The relationship between internal chain length of amylopectin and crystallinity in starch. Biopolymers 50:381–390.  https://doi.org/10.1002/(SICI)1097-0282(19991005)50:4<381::AID-BIP4>3.0.CO;2-W PubMedCrossRefGoogle Scholar
  178. Pan DD, Jane J-L (2000) Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 1:126–132PubMedCrossRefGoogle Scholar
  179. Pan T, Lin L, Wang J et al (2018) Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development. BMC Plant Biol 18:1–11.  https://doi.org/10.1186/s12870-017-1219-8 CrossRefGoogle Scholar
  180. Parker ML (1985) The relationship between A-type and B-type starch granules in the developing endosperm of wheat. J. Cereal Sci 3:271–278CrossRefGoogle Scholar
  181. Peng C, Wang Y, Liu F et al (2014) FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice ENDOSPERM. Plant J 77:917–930PubMedCrossRefGoogle Scholar
  182. Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Stärke 62:389–420.  https://doi.org/10.1002/star.201000013 CrossRefGoogle Scholar
  183. Pérez S, Baldwin PM, Gallant DJ (2009) Chapter 5 - Structural Features of Starch Granules I, In Food Science and Technology, edited by James BeMiller and Roy Whistler, Academic Press, San Diego, 2009, Pages 149–192, Starch (Third Edition), ISBN 9780127462752,  https://doi.org/10.1016/B978-0-12-746275-2.00005-7
  184. Pfannemüller B (1987) Influence of chain length of short monodisperse amyloses on the formation of A- and B-type X-ray diffraction patterns. Int J Biol Macromol 9:105–108CrossRefGoogle Scholar
  185. Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73:2781–2807.  https://doi.org/10.1007/s00018-016-2250-x PubMedPubMedCentralCrossRefGoogle Scholar
  186. Pilling E, Smith AM (2003) Growth ring formation in the starch granules of potato tubers. Plant Physiol 132:365–371PubMedPubMedCentralCrossRefGoogle Scholar
  187. Planchot V, Colonna P, Gallant DJ et al (1995) Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J Cereal Sci 21:163–171CrossRefGoogle Scholar
  188. Puteaux J, Potocki-Veronese G, Remaud-Simeon M et al (2006) Alpha-D-glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7:1720–1728CrossRefGoogle Scholar
  189. Putseys JA, Derde LJ, Lamberts L et al (2010) Functionality of short chain amylose-lipid complexes in starch-water systems and their impact on in vitro starch degradation. J Agric Food Chem 58:1939–1945PubMedCrossRefGoogle Scholar
  190. Radchuk VV, Borisjuk L, Sreenivasulu N et al (2009) Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol 150:190–204.  https://doi.org/10.1104/pp.108.133520 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Ragel P, Streb S, Feil R et al (2013) Loss of starch granule initiation has a deleterious effect on the growth of Arabidopsis plants due to an accumulation of ADP-glucose. Plant Physiol 163:75–85.  https://doi.org/10.1104/pp.113.223420 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Ral J-P, Colleoni C, Wattebled F et al (2006) Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol 142:305–317.  https://doi.org/10.1104/pp.106.081885 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Raynaud S, Ragel P, Rojas T et al (2016) The N-terminal part of Arabidopsis thaliana starch synthase 4 determines the localization and activity of the enzyme. J Biol Chem 291:10759–10771.  https://doi.org/10.1074/jbc.M115.698332 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Regina A, Kosar-Hashemi B, Li Z et al (2005) Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222:899–909.  https://doi.org/10.1007/s00425-005-0032-z PubMedCrossRefGoogle Scholar
  195. Regina A, Bird A, Topping D et al (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci 103:3546–3551.  https://doi.org/10.1073/pnas.0510737103 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ridout MJ, Gunning AP, Parker ML et al (2002) Using AFM to image the internal structure of starch granules. Carbohydr Polym 50:123–132CrossRefGoogle Scholar
  197. Ridout MJ, Parker ML, Hedley CL et al (2003) Atomic force microscopy of pea starch granules: granule architecture of wild-type parent, r and rb single mutants, and the rrb double mutant. Carbohydr Res 338:2135–2147PubMedCrossRefGoogle Scholar
  198. Ritte G, Heydenreich M, Mahlow S et al (2006) Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Lett 580:4872–4876.  https://doi.org/10.1016/j.febslet.2006.07.085 PubMedCrossRefGoogle Scholar
  199. Roach PJ, Depaoli-roach A a, Hurley TD, Tagliabracci VS (2016) Glycogen and its metabolism: some new developments and old themes. Biochem J 441: 763–787. doi:  https://doi.org/10.1042/BJ20111416.Glycogen
  200. Rösti S, Fahy B, Denyer K (2007) A mutant of rice lacking the leaf large subunit of ADP-glucose pyrophosphorylase has drastically reduced leaf starch content but grows normally. Funct Plant Biol 34:480–489.  https://doi.org/10.1071/FP06257 CrossRefGoogle Scholar
  201. Rydberg U, Andersson L, Andersson R et al (2001) Comparison of starch branching enzyme I and II from potato. Eur J Biochem 268:6140–6145PubMedCrossRefGoogle Scholar
  202. Salman H, Blazek J, Lopez-Rubio A et al (2009) Structure-function relationships in a and B granules from wheat starches of similar amylose content. Carbohydr Polym 75:420–427CrossRefGoogle Scholar
  203. Sawada T, Nakamura Y, Ohdan T et al (2014) Diversity of reaction characteristics of glucan branching enzymes and the fine structure of α-glucan from various sources. Arch Biochem Biophys 562:9–21.  https://doi.org/10.1016/j.abb.2014.07.032 PubMedCrossRefGoogle Scholar
  204. Schwall GP, Safford R, Westcott RJ et al (2000) Production of very-high-amylose potato starch by inhibition of SBE a and B. Nat Biotechnol 18:551–554.  https://doi.org/10.1038/75427 PubMedCrossRefGoogle Scholar
  205. Seung D, Soyk S, Coiro M et al (2015) PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol 13:1–29.  https://doi.org/10.1371/journal.pbio.1002080 CrossRefGoogle Scholar
  206. Seung D, Boudet J, Monroe J et al (2017) Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves. Plant Cell 29:1657–1677.  https://doi.org/10.1105/tpc.17.00222 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shimonaga T, Konishi M, Oyama Y et al (2008) Variation in storage α-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol 49:103–116.  https://doi.org/10.1093/pcp/pcm172 PubMedCrossRefGoogle Scholar
  208. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35:225–233PubMedCrossRefGoogle Scholar
  209. Sim L, Beeren SR, Findinier J et al (2014) Crystal structure of the Chlamydomonas starch debranching enzyme isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly. J Biol Chem 289:22991–23003.  https://doi.org/10.1074/jbc.M114.565044 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Smith AM (1988) Major differences in isoforms of starch-branching enzyme between developing embryos of round- and wrinkled-seeded peas (Pisum sativum L.). Planta 175:270–279.  https://doi.org/10.1007/BF00392437 PubMedCrossRefGoogle Scholar
  211. Sonnewald U, Basner A, Greve B et al (1995) A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Biol 27:567–576.  https://doi.org/10.1007/BF00019322 PubMedCrossRefGoogle Scholar
  212. Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292.  https://doi.org/10.1016/j.pbi.2012.03.016 PubMedCrossRefGoogle Scholar
  213. Streb S, Delatte T, Umhang M et al (2008) Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20:3448–3466.  https://doi.org/10.1105/tpc.108.063487 PubMedPubMedCentralCrossRefGoogle Scholar
  214. Sulpice R, Pyl E-T, Ishihara H et al (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348–10353.  https://doi.org/10.1073/pnas.0903478106 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Sun C, Sathish P, Ahlandsberg S, Jansson C (1998) The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol 118:37–49.  https://doi.org/10.1104/pp.118.1.37 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Sundberg M, Pfister B, Fulton D et al (2013) The heteromultimeric debranching enzyme involved in starch synthesis in Arabidopsis requires both isoamylase1 and isoamylase2 subunits for complex stability and activity. PLoS One 8:e75223.  https://doi.org/10.1371/journal.pone.0075223 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Swinkels JJM (1985) Composition and properties of commercial native starches. Stärke 37:1–5CrossRefGoogle Scholar
  218. Szydlowski N, Ragel P, Raynaud S et al (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457.  https://doi.org/10.1105/tpc.109.066522 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Takeda Y, Hizukuri S, Takeda C, Suzuki A (1987) Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydr Res 165:139–145.  https://doi.org/10.1016/0008-6215(87)80089-7 CrossRefGoogle Scholar
  220. Takeda Y, Maruta N, Hizukuri S (1992) Structures of amylose subfractions with different molecular sizes. Carbohydr Res 226:279–285.  https://doi.org/10.1016/0008-6215(92)84076-5 CrossRefGoogle Scholar
  221. Takeda Y, Guan HP, Preiss J (1993) Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr Res 240:253–263.  https://doi.org/10.1016/0008-6215(93)84188-C CrossRefGoogle Scholar
  222. Tanaka N, Fujita N, Nishi A et al (2004) The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnol J 2:507–516.  https://doi.org/10.1111/j.1467-7652.2004.00097.x PubMedCrossRefGoogle Scholar
  223. Tetlow IJ, Emes MJ (2014) A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life 66:546–558.  https://doi.org/10.1002/iub.1297 PubMedCrossRefGoogle Scholar
  224. Tetlow I, Emes M (2017) Starch biosynthesis in the developing endosperms of grasses and cereals. Agronomy 7:81.  https://doi.org/10.3390/agronomy7040081 CrossRefGoogle Scholar
  225. Tetlow IJ, Blissett KJ, Emes MJ (1998) Metabolite pools during starch synthesis and carbohydrate oxidation in amyloplasts isolated from wheat endosperm. Planta 204:100–108.  https://doi.org/10.1007/s004250050235 CrossRefGoogle Scholar
  226. Tetlow IJ, Davies EJ, Vardy KA et al (2003) Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J Exp Bot 54:715–725.  https://doi.org/10.1093/jxb/erg088 PubMedCrossRefGoogle Scholar
  227. Tetlow IJ, Wait R, Lu Z et al (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16:694–708.  https://doi.org/10.1105/tpc.017400 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Tetlow IJ, Beisel KG, Cameron S et al (2008) Analysis of protein complexes in wheat Amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891.  https://doi.org/10.1104/pp.108.116244 PubMedPubMedCentralCrossRefGoogle Scholar
  229. Tetlow I, Liu F, Emes M (2015) Protein-protein interactions during starch biosynthesis. In: Starch metabolism and structure. Springer, pp 291–313Google Scholar
  230. Thorbjørnsen T, Villand P, Denyer K et al (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J. 10:243–250CrossRefGoogle Scholar
  231. Tiessen A, Hendriks JHM, Stitt M et al (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase. Plant Cell 14:2191–2213.  https://doi.org/10.1105/tpc.003640.2192 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Tiessen A, Nerlich A, Faix B et al (2012) Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method. J Exp Bot 63:2071–2087.  https://doi.org/10.1093/jxb/err408 PubMedCrossRefGoogle Scholar
  233. Toyosawa Y, Kawagoe Y, Matsushima R et al (2016) Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol 170:1255–1270.  https://doi.org/10.1104/pp.15.01232 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Tsai CY, Salamini F, Nelson OE (1970) Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol 46:299–306.  https://doi.org/10.1104/pp.46.2.299 PubMedPubMedCentralCrossRefGoogle Scholar
  235. Tunçay H, Findinier J, Duchêne T et al (2013) A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism. PLoS One 8.  https://doi.org/10.1371/journal.pone.0074763
  236. Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci 211:52–60.  https://doi.org/10.1016/j.plantsci.2013.06.009 PubMedCrossRefGoogle Scholar
  237. Utsumi Y, Nakamura Y (2006) Structural and enzymatic characterization of the isoamylase1 homo-oligomer and the isoamylase1-isoamylase2 hetero-oligomer from rice endosperm. Planta 225:75–87.  https://doi.org/10.1007/s00425-006-0331-z PubMedCrossRefGoogle Scholar
  238. Utsumi Y, Utsumi C, Sawada T et al (2011) Functional diversity of Isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in Rice endosperm. Plant Physiol 156:61–77.  https://doi.org/10.1104/pp.111.173435 PubMedPubMedCentralCrossRefGoogle Scholar
  239. Valdez HA, Busi MV, Wayllace NZ et al (2008) Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 47:3026–3032PubMedCrossRefGoogle Scholar
  240. Vamadevan V, Bertoft E, Seetharaman K (2013) On the importance of organization of glucan chains on thermal properties of starch. Carbohydr Polym 92:1653–1659.  https://doi.org/10.1016/j.carbpol.2012.11.003 PubMedCrossRefGoogle Scholar
  241. van Berkel J, Conrads-Strauch J, Steup M (1991) Glucan-phosphorylase forms in cotyledons of Pisum sativum L.: localization, developmental change, in-vitro translation, and processing. Planta 185:432–439.  https://doi.org/10.1007/BF00201068 PubMedCrossRefGoogle Scholar
  242. van de Wal M, D’Hulst C, Vincken JP et al (1998) Amylose is synthesised in vitro by extension of and cleavage from amylopectin. J Biol Chem 273:22232–22240PubMedCrossRefGoogle Scholar
  243. Venn BJ, Mann JI (2004) Cereal grains, legumes and diabetes. Eur J Clin Nutr 58:1443–1461.  https://doi.org/10.1038/sj.ejcn.1601995 PubMedCrossRefGoogle Scholar
  244. Vrinten PL, Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol 122:255–264.  https://doi.org/10.1104/pp.122.1.255 PubMedPubMedCentralCrossRefGoogle Scholar
  245. Waigh TA, Perry P, Riekel C et al (1998) Chiral side-chain liquid-crystalline polymeric properties of starch. Macromolecules 31:7980–7984.  https://doi.org/10.1021/ma971859c CrossRefGoogle Scholar
  246. Wang J, Hu P, Chen Z et al (2017) Progress in high-amylose cereal crops through inactivation of starch branching enzymes. Front Plant Sci 8:469PubMedPubMedCentralGoogle Scholar
  247. Wang J, Hu P, Lin L et al (2018) Gradually decreasing starch branching enzyme expression is responsible for the formation of heterogeneous starch granules. Plant Physiol 176:582–595.  https://doi.org/10.1104/pp.17.01013 PubMedCrossRefGoogle Scholar
  248. Wattebled F, Dong Y, Dumez S et al (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol 138:184–195.  https://doi.org/10.1104/pp.105.059295 PubMedPubMedCentralCrossRefGoogle Scholar
  249. Wayllace NZ, Valdez HA, Ugalde RA et al (2010) The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana: enzymes and catalysis. FEBS J 277:428–440.  https://doi.org/10.1111/j.1742-4658.2009.07495.x PubMedCrossRefGoogle Scholar
  250. Weber APM, Schwacke R, Flügge U-I (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56:133–164.  https://doi.org/10.1146/annurev.arplant.56.032604.144228 PubMedCrossRefGoogle Scholar
  251. Xia H, Yandeau-Nelson M, Thompson DB et al (2011) Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC Plant Biol 11:95.  https://doi.org/10.1186/1471-2229-11-95 PubMedPubMedCentralCrossRefGoogle Scholar
  252. Xu X, Dees D, Dechesne A et al (2017) Starch phosphorylation plays an important role in starch biosynthesis. Carbohydr Polym 157:1628–1637.  https://doi.org/10.1016/j.carbpol.2016.11.043 PubMedCrossRefGoogle Scholar
  253. Yamanouchi H, Nakamura Y (1992) Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol 33:985–991.  https://doi.org/10.1093/oxfordjournals.pcp.a078351 CrossRefGoogle Scholar
  254. Yang Y, Steup M (1990) Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme : I. Isolation and characterization. Plant Physiol 94:960–969.  https://doi.org/10.1104/pp.94.3.960 PubMedPubMedCentralCrossRefGoogle Scholar
  255. Young GH, Chen HM, Lin CT et al (2006) Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 223:468–478.  https://doi.org/10.1007/s00425-005-0103-1 PubMedCrossRefGoogle Scholar
  256. Yu Y, Mu HH, Wasserman BP et al (2001) Identification of the maize amyloplast stromal 112-kD protein as a plastidic starch phosphorylase. Plant Physiol 125:351–359.  https://doi.org/10.1104/pp.125.1.351 PubMedPubMedCentralCrossRefGoogle Scholar
  257. Yun MS, Kawagoe Y (2010) Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant Cell Physiol 51:1469–1479.  https://doi.org/10.1093/pcp/pcq116 PubMedCrossRefGoogle Scholar
  258. Yun MS, Umemoto T, Kawagoe Y (2011) Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol 52:1068–1082.  https://doi.org/10.1093/pcp/pcr058 PubMedPubMedCentralCrossRefGoogle Scholar
  259. Zabawinski C, Van Den Koornhuyse N, D’Hulst , et al (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a Heterotetrameric ADP-glucose Pyrophosphorylase. Journal of Bacteriology 183: 1069–1077 . doi:  https://doi.org/10.1128/JB.183.3.1069
  260. Zeeman SC, Umemoto T, Lue WL et al (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10:1699–1712.  https://doi.org/10.1105/tpc.10.10.1699 PubMedPubMedCentralCrossRefGoogle Scholar
  261. Zeeman SC, Thorneycroft D, Schupp N et al (2004) Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135:849–858.  https://doi.org/10.1104/pp.103.032631 PubMedPubMedCentralCrossRefGoogle Scholar
  262. Zhang X, Myers AM, James MG (2005) Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiol 138:663–674.  https://doi.org/10.1104/pp.105.060319 PubMedPubMedCentralCrossRefGoogle Scholar
  263. Zhang L, Ren Y, Lu B et al (2016) FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral ENDOSPERM development in rice. J Exp Bot 67:633–647PubMedCrossRefGoogle Scholar
  264. Zhu F (2017) Atomic force microscopy of starch systems. Crit Rev Food Sci Nutr 57:3127–3144PubMedCrossRefGoogle Scholar
  265. Zhu F, Bertoft E, Szydlowski N et al (2015) Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases. Carbohydr Res 401:96–108PubMedCrossRefGoogle Scholar
  266. Ziegler GR, Creek JA, Runt J (2005) Spherulitic crystallization in starch as a model for starch granule initiation. Biomacromolecules 6:1547–1554.  https://doi.org/10.1021/bm049214p PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of GuelphGuelphCanada
  2. 2.Department of Molecular and Cellular Biology, College of Biological SciencesUniversity of GuelphGuelphCanada

Personalised recommendations