, Volume 256, Issue 3, pp 805–814 | Cite as

Comparative cytogenetics of the ACPT clade (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae): a very diverse group of the suborder Cactineae, Caryophyllales

  • Maria Angélica Oliveira MarinhoEmail author
  • Gustavo Souza
  • Leonardo P. Felix
  • Reginaldo De Carvalho
Original Article


The clade ACPT (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae) is the most diverse lineage of the subordem Cactineae. The relationships between these families are still uncertain, with different topologies suggested by phylogenetic analyses with several combinations of markers. Different basic numbers (x) have been suggested for each family and for the subord, often in a contestable way. Comparative cytogenetic has helped to understand the evolutionary relationships of phylogenetically poorly resolved groups, as well as their mechanisms of karyotype evolution. The karyotype evolution in representatives of Cactineae was analyzed, focusing on the ACPT clade, through the analysis of chromosome number in a phylogenetic bias. The phylogeny obtained showed a well-resolved topology with support for the monophyly of the five families. Although a chromosomal number is known for less than 30% of the Cactineae species, the analyses revealed a high karyotype variability, from 2n = 8 to 2n = 110. The analysis of character reconstruction of the ancestral haploid numbers (p) suggested p = 12 for Cactineae, with distinct basic numbers for the clade family ACPT: Cactaceae and Montiaceae (p = 11), Talinaceae (p = 12), and Anacampserotaceae and Portulacaceae (p = 9). Talinaceae, Anacampserotaceae, and Cactaceae were stable, while Portulaca and Montiaceae were karyotypically variable. The chromosome evolution of this group was mainly due to events of descending disploidy and poliploidy. Our data confirm that the low phylogenetic resolution among the families of the ACPT clade is due to a divergence of this clade in a short period of time. However, each of these families can be characterized by basic chromosome numbers and unique karyotype evolution events.


Disploidy Karyotype evolution Poliploidy Comparative phylogenetic methods Basic number (x



We thank the Laboratório de Genetica e Inovação (UFRPE) for providing the infrastructure necessary for this study and Laboratório de Citogenética e Evolução Vegetal (UFPE) for the technical support in bioinformatics analyses.

Funding information

This study was supported by a research grant from the Cordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). Finance code 001.

Supplementary material

709_2018_1334_MOESM1_ESM.doc (3.4 mb)
ESM 1 (DOC 3.38 mb)
709_2018_1334_MOESM2_ESM.jpg (3 mb)
ESM 2 (3.03 MB)


  1. Akaike HA (1974) New look at the statistical model identification. IEEE Trans Autom Control Boston 19(6):716–723CrossRefGoogle Scholar
  2. Applequist WL, Wallace RS (2001) Phylogeny of the Portulacaceous cohort based on ndhF sequence data. Syst Bot 26(2):406–419Google Scholar
  3. Applequist WL, Wagner WL, Zimmer EA, Nepokroeff M (2006) Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). Syst Bot 31:310–319CrossRefGoogle Scholar
  4. Barthlott W, Hunt DR (1993) Cactaceae. In The families and genera of vascular plants 2. In: Kubitzki K (ed). Available in:
  5. Bennett MD (1998) Plant genome values: how much do we know? Proc Natl Acad Sci U S A 95:2011–2016CrossRefGoogle Scholar
  6. Bernardello LM (1989) The chromosomes of Grahamia (Portulacaceae). Plant Syst Evol 163:127–131CrossRefGoogle Scholar
  7. Bouharmont J (1965) Note sur la cytologie de quelques espéces de Portulaca. Bull Soc R Bot Belg 98:175–188Google Scholar
  8. Carolin R (1987) A review of the family Portulacaceae. Aust J Bot 35:383–412CrossRefGoogle Scholar
  9. Castro JP, Souza LGR, Alves LF, Silva AEB, Guerra M, Felix LP (2013) Cactaceae In: K. Marhold (ed) IAPT/IOPB chromosome data 15. Taxon 62:1073–1083Google Scholar
  10. Castro JP, Moraes AP, Chase MW, Souza G, Batista FRC, Felix PF (in press) Evolution of chromosome number and markers in Cactaceae with special emphasis on subfamily Cactoideae. submitted to: American Journal of BotanyGoogle Scholar
  11. CCDB- Chromosome Counts Database. Available at: Accessed 20 Dec 2017
  12. Chacón J, Cusimano N, Renner SS (2014) The evolution of Colchicaceae, with a focus on chromosome numbers. Syst Bot 39(2):415–427CrossRefGoogle Scholar
  13. Christenhusz MMJM, Vorontsova MS, Fay MF, Chase MMW (2015) Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot J Linn Soc 178:501–528. CrossRefGoogle Scholar
  14. Cooper DC (1935) Microsporogenesis and the development of the male gametophyte in Portulacaoleracea. Am J Bot 22:453–457CrossRefGoogle Scholar
  15. Cusimano N, Sousa A, Renner SS (2012) Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by “x”. Ann Bot 109(4):681–692CrossRefGoogle Scholar
  16. Dannemann A (2000) Der Einfluss von Fragmentierung und Populationsgrösse auf die genetische Variation auf Fitness von seltenen Pflanzenarten am Beispiel von Biscutella laevigata (Brassicaceae). Dissertationes Botanicae 330:1–151Google Scholar
  17. Dawe RK (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:371–395CrossRefGoogle Scholar
  18. Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci U S A 97:9115–9120CrossRefGoogle Scholar
  19. Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188CrossRefGoogle Scholar
  20. Eggli U (1997) A synopsis of woody Portulacaceae in northern Madagascar. Adansonia 17:149–158Google Scholar
  21. Eggli UE, Ford-Werntz D (2002) Illustrated handbook of succulent plants—Dicotyledons. Portulacaceae. Springer, New York, pp 370–432Google Scholar
  22. Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One 9(1)Google Scholar
  23. Gerbaulet M (1992) Die Gattung Anacampseros L. (Portulacaceae). I. Untersuchungen zur Systematik. Botanische Jahrbücher für Systematik. Pflanzengeschichte und Pflanzengeographie 113:477–564Google Scholar
  24. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeCrossRefGoogle Scholar
  25. Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31(7):1914–1922CrossRefGoogle Scholar
  26. Guerra M (2000) Chromosome number variation and evolution in monocots. In: Wilson KL, Morrison DA (eds) Monocots—systematics and evolution—vol 1—Proceedings of the Second International Conference on the Comparative Biology of the Monocots, pp 125–134Google Scholar
  27. Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350CrossRefGoogle Scholar
  28. Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. Official Journal of the Societa Botanica Italiana146(3):703–710. Available in:
  29. Hernández-Ledesma P et al (2015) A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Botanic Garden and Botanical Museum Berlin (BGBM). Willdenowia 45(3):281–383CrossRefGoogle Scholar
  30. Hershkovitz MA (1993) Revised circumscriptions and subgeneric taxonomies of Calandrinia and Montiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. Ann Mo Bot Gard 80:333–365CrossRefGoogle Scholar
  31. Hershkovitz MA, Zimmer EA (1997) On the evolutionary origins of the cacti. Taxon 46:217–232CrossRefGoogle Scholar
  32. Hunziker JH, Pozner R, Escobar A (2000) Chromosome number in Halophytum ameghinoi (Halophytaceae). Plant Syst Evol 221:125–127CrossRefGoogle Scholar
  33. Jones SB (1977) Vernonieae—systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic, LondonGoogle Scholar
  34. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649CrossRefGoogle Scholar
  35. Kim I, Carr GD (1990) Cytogenetics and hybridization of Portulaca in Hawaii. Syst Bot 15:370–377CrossRefGoogle Scholar
  36. Langlet O (1927) Beitra ¨ge zur Zytologie der Ranunculaceen. Sven Bot Tidskr 21:1–17Google Scholar
  37. Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Plant Syst. Evol. 272(1–4):211–222CrossRefGoogle Scholar
  38. Las Peñas ML, Urdampilleta JD, Bernardello G, Forni-Martins ER (2009) Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet Genome 124:72–80CrossRefGoogle Scholar
  39. Las Peñas ML, Kiesling R, Bernardello G (2011) Karyotype, heterochromatin, and physical mapping of 5S and 18- 5.8-26S rDNA genes in Setiechinopsis (Cactaceae), an Argentine endemic genus. Haseltonia 16(1):83–90CrossRefGoogle Scholar
  40. Las Peñas ML, Urdampilleta JD, López-Carro B, Santiñaque F, Kiesling R, Bernardello G (2014) Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Plant Syst. Evol. 300(3):549–558CrossRefGoogle Scholar
  41. Las Peñas ML, Santiñaque F, López-Carro B, Stiefkens L (2016) Estudios citogenéticos y de contenido de ADN en Brasiliopuntia schulzii (Cactaceae) Cytogenetic studies and DNA content in Brasiliopuntia schulzii (Cactaceae). Gayana Bot 73(2):414–420CrossRefGoogle Scholar
  42. Las Peñas ML, Oakley L, Moreno NC, Bernardello G (2017) Taxonomic and cytogenetic studies in Opuntia ser. Armatae (Cactaceae). Botany 95:101–120CrossRefGoogle Scholar
  43. Levin DA, Wilson AC (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc Natl Acad Sci U S A 73:2086–2090CrossRefGoogle Scholar
  44. Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity: physical structure, Behaviour and Evolution of Plant Genomes 2 pp 137–147Google Scholar
  45. Maddison WP, Maddison MDR (2014) Mesquite: a modular system for evolutionary analysis. Version 3.01. Available at: Acessad 1 Julho 2016
  46. Majure LC, Judd WS, Soltis PS, Soltis DE (2012) Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex. Comp Cytogenet 6:53–77CrossRefGoogle Scholar
  47. Manton I (1937) The problem of Biscutella laevigata L. II. The evidence from meiosis. Ann Bot 51:439–465CrossRefGoogle Scholar
  48. Marinho RC, Mendes-Rodrigues C, Bonetti AM, Oliveira PE (2014) Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae-Bombacoideae). Plant Biol 16:508–511CrossRefGoogle Scholar
  49. Matthew JF, Ketron DW, Zane SF (1994) The seed surface morphology and cytology of six species of Portulaca (Portulacaceae). Castanea 59(4):331–337Google Scholar
  50. Mauseth JD (1990) Continental drift, climate, and the evolution of cacti. University of Texas, Austin, TX. Cactus and Succulent Journal 62:302–308Google Scholar
  51. Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144CrossRefGoogle Scholar
  52. Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257CrossRefGoogle Scholar
  53. Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G (2015) Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot J Linn Soc 177:263–277CrossRefGoogle Scholar
  54. Nyffeler R (2007) The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae. Am J Bot 94:89–101CrossRefGoogle Scholar
  55. Nyffeler R, Eggli U (2010) Disintegrating portulacaceae: a new familial classification of the suborder portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59(1):227–240CrossRefGoogle Scholar
  56. Nyffeler R, Eggli U, Ogburn M, Edwards E (2008) Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales). Haseltonia 14:26–36CrossRefGoogle Scholar
  57. Ocampo G, Columbus JT (2010) Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosyntetic diversification and historical biogeography. Am J Bot 97:1827–1847CrossRefGoogle Scholar
  58. Ocampo G, Columbus JT (2012) Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae). Mol Phylogenet Evol 63(1):97–112CrossRefGoogle Scholar
  59. Ogburn RM, Edwards ETJ (2009) Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. Am J Bot 96:391–408CrossRefGoogle Scholar
  60. Olowokudejo JD. (1980) Systematic studies in the genus Biscutella L. (Cruciferae): 424 p. University of Reading (unpublished Ph. D. thesis)Google Scholar
  61. Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol 201(4):1484–1497CrossRefGoogle Scholar
  62. Peruzzi L (2013) x’ is not a bias, but a number with real biological significance. Journal Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, Official Journal of the Societa Botanica Italiana 147:1238–1241Google Scholar
  63. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefGoogle Scholar
  64. Rambaut A (2009) FigTree v1. 3.1: tree figure drawing tool. Accessed 15, 2016
  65. Ribeiro T, Buddenhagen CE, Thomas WW, Souza G, Pedrosa-Harand A (2017) Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). Protoplasma 255(1):263–272CrossRefGoogle Scholar
  66. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  67. Sharma AK, Bhattacharyya NK (1956) Cytogenetics of some members of Portulacaceae and related families, Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 8(2):257–274Google Scholar
  68. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A 97(13):7051–7057CrossRefGoogle Scholar
  69. Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then... and now: Stebbins revisited. Am J Bot 101(7):1057–1078CrossRefGoogle Scholar
  70. Steiner E (1944) Cytogenetic studies on Talinum and Portulaca. Bot Gaz 105:374–379CrossRefGoogle Scholar
  71. Stevens PF (2001) Angiosperm phylogeny website, version 12. Acessado em: julho de 2016. Disponível em:
  72. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  73. Turner BL (1994) Chromosome numbers and their phyletic interpretation. In: Behnke HD, Mabry TJ (eds) Caryophyllales: evolution and systematics. Springer-Verlag, Berlin, pp 27–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate Program in Botany, Department of BiologyUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Laboratory of Cytogenetics and Evolution of Plants, Department of BotanyUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Center of Agrarian SciencesUniversidade Federal da ParaíbaAreiaBrazil

Personalised recommendations