Skip to main content
Log in

The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The effect of propyl gallate (PG), a synthetic antioxidant, on antioxidant responses and salinity tolerance was investigated in the cells of the green microalga, Dunaliella bardawil. Algal suspensions grown at three salinity levels of 1, 2, and 3 M NaCl were incubated with 1 mM of PG. The number of cells was significantly lower in all PG-treated cells compared to untreated controls. Despite PG-induced cell death, the fresh weight of all PG-treated cells was considerably higher than controls. PG-treated cells had enhanced antioxidant capacity because of increased levels of Chlorophyll a, β-carotene, reduced ascorbate, protein, and enzymatic activities, but accumulated lower levels of malonyldialdehyde and hydrogen peroxide compared to untreated cells. The results suggest that PG acts as a signal molecule both directly by reducing of free radical oxidants and indirectly by augmenting ascorbate pool levels, β-carotene production, and antioxidant enzymes activity to boost the capacity of antioxidant systems and radical oxygen species scavenging. Therefore, induction of salt stress tolerance by PG in D. bardawil is associated with metabolic adjustments through activation or synthesis of both enzymatic and non-enzymatic molecules involved in antioxidant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Avron M, Ben-Amotz A (1992) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, de Abrau CEB, Gomez- Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halo-tolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  • Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee Tripaty BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol 159:433–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritime L.) Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Asada K (1992) Inactivation of ascorbate peroxidase by thoils requires hydrogen peroxide. Plant Cell Physiol 33:117–123

    CAS  Google Scholar 

  • Chen H, Jiang JG, Wu GH (2009) Effect of salinity changes on the growth of Dunaliella salina and its isozyme activites of glycerol-3-phosphat dehydrogenas. J Agric Food Chem 57:6178–6182

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  CAS  PubMed  Google Scholar 

  • Cowan AK, Rose PD, Horne LG (1992) Dunaliella salina—a model system for studying the response of plant cells to stress. J Exp Bot 43:1535–1547

    Article  CAS  Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178

    Article  Google Scholar 

  • Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A, Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4:5–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Einali A, Shariati M (2012) Effects of n-propyl gallate on photosynthesis and physiological parameters in Dunaliella salina are affected by stressful conditions. Braz J Plant Physiol 24:193–202

    Article  CAS  Google Scholar 

  • Einali A, Shariati M (2015) Effects of propyl gallate on photosystem II efficiency in Dunaliella bardawil under high illumination as investigated by chlorophyll fluorescence measurements. Theor Exp Plant Physiol 27:61–73

    Article  CAS  Google Scholar 

  • Einali A, Valizadeh J (2015) Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing b-carotene production. Acta Physiol Plant 37:83

    Article  Google Scholar 

  • Elich TD, Edelman M, Mattoo AK (1997) Evidence for light-dependent and light independent protein dephosphorilation in chloroplasts. FEBS Lett 411:236–238

    Article  CAS  PubMed  Google Scholar 

  • Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna uniguiculata. Physiol Plant 117:237–244

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302

    Article  CAS  PubMed  Google Scholar 

  • Gamboa J, Munoz M, Quiles MJ (2009) Effects of antimycin A and n-propyl gallate on photosynthesis in sun and shade plants. Plant Sci 177:643–647

    Article  CAS  Google Scholar 

  • Gapinska M, Skłodowska M, Gabara B (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid eroxidation in tomato roots. Acta Physiol Plant 30:11–18

    Article  CAS  Google Scholar 

  • Garcia F, Freile-Pelegrin Y, Robledo D (2007) Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour Technol 98:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gomez C, Parages ML, Jimenez C, Palma A, Mata MT, Segovia M (2012) Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation. J Exp Bot 63:5259–5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Haghjou MM, Shariati M, Smirnoff N (2009) The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol Plant 135:272–280

    Article  CAS  PubMed  Google Scholar 

  • Haghjou MM, Colville L, Smirnoff N (2014) The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools. Plant Physiol Biochem 84:96–104

    Article  Google Scholar 

  • He YL, Liu YL, Chen Q, Bian AH (2002) Thermotolerance related to antioxidation induced by salicylic acid and heat acclimation in tall fescue seedlings. J Plant Physiol Mol Biol 28:89–95

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jahnke LS, White AL (2003) Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J Plant Physiol 160:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Jimenez C, Niell FX (1990) Influence of temperature and nitrogen concentration on photosynthesis of Dunaliella viridis Teodoresco. J Appl Phycol 2:309–317

    Article  CAS  Google Scholar 

  • Jimenez C, Pick U (1993) Differential reactivity of β-carotene isomers from Dunaliella bardawil toward oxygen radicals. Plant Physiol 101:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovanovic S, Steenken S, Hara Y, Simic M (1996) Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J Chem Soc Perkin Trans 2:2497–2504

    Article  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Article  Google Scholar 

  • Kratz JM, Andrighetti-Frohner CR, Leal PC, Nunes RJ, Yunes RA, Trybala E, Bergstrom T, Barardi CRM, Simoes CMO (2008) Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biol Pharm Bull 31:903–907

    Article  CAS  PubMed  Google Scholar 

  • Krinsky NI, Yeum KJ (2003) Carotenoid-radical interactions. Biochem Biophys Res Commun 305:754–760

    Article  CAS  PubMed  Google Scholar 

  • Kuntz M (2004) Plastid terminal oxidase and its biological significance. Planta 218:896–899

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Yuan YB, Liu CL, Cao ZX (1998) Regulation of antioxidant enzymes by salicylic acid in cucumber leaves. Acta Bot Sin 40:356–361

    CAS  Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luck H (1962) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlage Chemie, Weinheim, pp 885–894

    Google Scholar 

  • Mishra A, Jha B (2011) Antioxidant response of the microalga Dunaliella salina under salt stress. Bot Mar 54:195–199

    CAS  Google Scholar 

  • Mishra A, Mandoli A, Jha B (2008) Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J Ind Microbiol Biotechnol 35:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 9:651–681

    Article  Google Scholar 

  • Nagata T, Todoriki S, Kikuchi S (2004) Radial expansion root cells and elongation of root hairs of Arabidopsis thaliana induced by massive doses of gamma irradiation. Plant Cell Physiol 45:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pfundel E, Bilger W (1994) Regulation and the possible function of the violaxanthin cycle. Photosynth Res 42:89–109

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Schafer W, Cmiel E, Katheder I, Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem 219:671–679

    Article  CAS  PubMed  Google Scholar 

  • Raghavan S, Hultin HO (2005) Model system for testing the efficacy of antioxidants in muscle foods. J Agric Food Chem 53:4572–4577

    Article  CAS  PubMed  Google Scholar 

  • Reddan JR, Giblin FJ, Sevilla M, Padgaonkar V, Dziedzic DC, Leverenz VR, Misra IC, Chang JS, Pena JT (2003) Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Exp Eye Res 76:49–59

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salguero A, de la Morena B, Vigara J, Vega JM, Vilchez C, Leon R (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 20:249–253

    Article  CAS  PubMed  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106

    Article  CAS  Google Scholar 

  • Schoen M (1988) Cell counting. In: Lobban C, Champan D, Kermer BP (eds) Experimental phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Shaish A, Avron M, Pick U, Benamotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil. Planta 190:363–368

    Article  CAS  Google Scholar 

  • Shigeoka S, Yokota A, Nakano Y, Kitaoka S (1979) The effect of illumination on the L-ascorbic acid content in Euglena gracillis Z. Agric Biol Chem 43:2053–2058

    CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Tian JY, Yu J (2009) Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. J Photochem Photobiol B Biol 97:152–160

    Article  CAS  Google Scholar 

  • Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One 9:e91957

    Article  PubMed  PubMed Central  Google Scholar 

  • Zurita JL, Josb A, Pesoa AD, Salgueroa M, Lopez-Artigueza M, Repetto G (2007) Ecotoxicological effects of the antioxidant additive propyl gallate in five aquatic systems. Water Res 41:2599–2611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the USB Deputy of Research for financial assistance in the form of grants for the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Einali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

ESM 1

(DOC 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Einali, A. The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity. Protoplasma 255, 601–611 (2018). https://doi.org/10.1007/s00709-017-1173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1173-1

Keywords

Navigation