Skip to main content
Log in

Structure of the style and pollen tube pathway in the Ziziphoid and Rhamnoid clades of Rhamnaceae

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The ultrastructure of the style and pollen tube pathway before, during and after anthesis were studied in 13 species belonging to the tribes Pomaderreae, Paliureae, Colletieae and Gouanieae (Ziziphoid clade) and Rhamneae (Rhamnoid clade) using light microscopy and transmission electron microscopy. The aim of this study is to provide new morphological characters useful for phylogenetic analysis at suprageneric level in Rhamnaceae. The patterns of pollen tube growth and the ultrastructural changes undergone by cells of the style were also described. Species of Rhamneae (Scutia buxifolia and Condalia buxifolia) have a solid style, with the transmitting tissue forming three independent strands (S. buxifolia) or a central, single horseshoe-shaped strand as seen in transversal section (C. buxifolia) which could derive from the fusion of formerly independent strands. In contrast, Pomaderreae, Gouanieae and Paliureae showed semi-solid styles, while in Colletieae, as previously reported, the style is hollow with two or three stylar canals. The style anatomy and the ultrastructure of the pollen tube pathway show that there is a tendency towards a solid style with a single strand of transmitting tissue within the family. The three-canalled hollow style could be the plesiomorphic state of the character “type of style” in the family, the semi-solid style the synapomorphic state and the solid style with three strands of transmitting tissue the apomorphic state, with the solid style with a single strand of transmitting tissue as the most derived state. Therefore, Colletieae would be the most basal tribe of the Ziziphoid clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arora N (1953) The embryology of Ziziphus rotundifolia Lamk. Phytomorphology 3:88–98

    Google Scholar 

  • Ciampolini F, Cresti M, Sarfatti G, Tiezzi A (1981) Ultrastructure of the stylar canal cells of Citrus limon (Rutaceae). Plant Syst Evol 138:263–274

    Article  Google Scholar 

  • Clarke AE, Considine JA, Ward R, Knox RB (1977) Mechanism of pollination in Gladiolus: roles of the stigma and pollen-tube guide. Ann Bot 41:15–20

    Article  Google Scholar 

  • Gasser CS, Robinson-Beers K (1993) Pistil development. Plant Cell 5:1231–1239

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotelli MM, Galati BG, Medan D (2010) Structure of the stigma and style in sunflower (Helianthus annuus L.) Biocell 34(3)

  • Gotelli MM, Galati BG, Medan D (2012) Structure of the stigma and style in Colletia and Discaria (Rhamnaceae: Colletieae). Plant Syst Evol 298:1635–1641

    Article  Google Scholar 

  • Gotelli M, Galati B, Medan D (2016a) Ultrastructural studies of floral nectaries in Rhamnaceae. J Torrey Bot Soc 144:63–73

    Article  Google Scholar 

  • Gotelli M, Galati B, Zarlavsky G (2016b) Pollen development and anther morphology in 14 species of Rhamnaceae. Plant Syst Evol 302:1433–1444

    Article  CAS  Google Scholar 

  • Gunning BES, Pate JS (1969) Transfer cells: plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—their occurrence, structure and development. Protoplasma 68:107–133

    Article  Google Scholar 

  • Hanackova Z, Piñeyro Lopez A (1999) The Karwinska parviflora flower. Biologia (Bratisl) 54:85–90

    Google Scholar 

  • Hanf M (1935) Vergleichende und entwicklungsgeschichtliche Untersuchungen uber Morphologie und Anatomie der Griffel und Griffelaste. Beih Bot Zbl 54:99–141

    Google Scholar 

  • Hauenschild F, Matuszak S, Muellner-Riehl AN, Favre A (2016) Phylogenetic relationships within the cosmopolitan buckthorn family (Rhamnaceae) support the resurrection of Sarcomphalus and the description of Pseudoziziphus gen. nov. Taxon 65:47–64

    Article  Google Scholar 

  • Herrero M, Dickinson HG (1979) Pollen–pistil incompatibility in Petunia hybrida—changes in the pistil following compatible and incompatible intraspecific crosses. J. Cell Sci 36:1–18

    CAS  Google Scholar 

  • Hristova K, Lam M, Feild T, Sage TL (2005) Transmitting tissue ECM distribution and composition, and pollen germinability in Sarcandra glabra and Chloranthus japonicus (Chloranthaceae). Ann Bot 96:779–791

  • Johri BM (ed) (1984) Embryology of angiosperms. Berlin, Springer

    Google Scholar 

  • Kajale LB (1944) A contribution to the life history of Zizyphus jujuba Lamk. Proc Nat Inst Sci India 10:387–391

  • Knox RB (1984) The pollen grain. In: Johri (ed) Embryology of angiosperms. Springer-Verlag, Heidelberg, pp 197–271

    Chapter  Google Scholar 

  • Laguna I, Cocucci AE (1971) El ovario, el óvulo y el megagametófito de Colletia spinosissima (Rhamnaceae). Kurtziana 6:53–62

    Google Scholar 

  • Medan D (1985) Fruit morphology and seed dispersal in the Colletieae (Rhamnaceae).I The genus Discaria. Bot Jahrb Syst 105:205–262

    Google Scholar 

  • Medan D, Schirarend C (2004) Rhamnaceae. In: Kubitzki (ed) The families and genera of vascular plants VI. Flowering plants—Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer Verlag, Heidelberg, pp 320–338

    Google Scholar 

  • Pandey AK (1997) Introduction to the embryology of angiosperms. CBS Publishers and Distributors, Daryaganj

    Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Biol 23:173–196

    Article  Google Scholar 

  • Prichard, EC (1955) Morphological studies in Rhamnaceae. J Elisha Mitchell Soc 71:82–106

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge. University Press. 33-35

  • Reynolds ES (1963) The use of lead tissue citrate and high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JE, Fay MF, Cronk QCB, Chase MW (2000b) A revision of the tribal classification of Rhamnaceae. Kew Bull 55:311–340

    Article  Google Scholar 

  • Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000a) A phylogenetic analysis of Rhamnaceae using rbcL. and trnL-F plastid DNA sequences. Am J Bot 87:1309–1324

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeldt S, Galati BG (2000) Stigma and style morphology in Ceiba insignis (Bombacaceae). Phytomorphology 50:69–74

    Google Scholar 

  • Rosenfeldt S, Galati BG (2009) The structure of the stigma and the style of Oxalis spp. (Oxalidaceae). J. Torrey Bot Soc 136:33–45

    Article  Google Scholar 

  • Suessenguth K (1953) Rhamnaceae, Vitaceae, Leeaceae. In: Engler, Prantl (eds) Die Naturlichen Pflanzenfamilien 2. Duncker and Humbolt, Berlin, pp 7–173

    Google Scholar 

  • Talbot MJ, Wasteneys G, Mccurdy DW, Offler CE (2007) Deposition patterns of cellulose microfibrils in flange wall ingrowths of transfer cells indicate clear parallels with those of secondary wall thickenings. Funct Plant Biol 34:307–313

    Article  CAS  Google Scholar 

  • Tilton VR, Horner HT Jr (1980) Stigma, style, and obturator of Ornithogalum caudatum (Liliaceae) and their function in reproductive process. Am J Bot 67:1113–1131

    Article  Google Scholar 

  • Tortosa RD (1982) Organografía y vascularización de flores de Discaria, Colletia y Condalia (Rhamnaceae). Kurtziana 15:19–39

    Google Scholar 

  • Perveen A, Qaiser M (2005) Pollen flora of Pakistan–XLIV. Rhamnaceae Pakistan J Bot 37(2):195–202

    Google Scholar 

  • Prichard EC (1955) Morphological studies in Rhamnaceae. J Elisha Mitchell Sci Soc 71:82–106

    Google Scholar 

  • Vasil IK (1974) The histology and physiology of pollen tube growth on the stigma and in the style. In: Linskens (ed) Fertilization in higher plants. North Holland Publ, Amsterdam, pp 105–118

    Google Scholar 

  • Vasil IK, Johri MM (1964) The style, stigma and pollen tube. Phytomorphology 14:352–369

    Google Scholar 

  • Vikhierva VV (1952) Morphologicoanatomical study of the fruits in the buckthorn family. Trudy Bot Inst Akad Nauk SSSR 7:241–292. [In Russian]

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Frosch A (1995) The development of the transmitting tract in the pistil of Hacquetia epipactis (Apiaceae). Int J Plant Sci 156:615–662

    Article  Google Scholar 

  • Wilms HJ (1980) Development and composition of the spinach ovule. Acta Botanica Neerlandica 29:243–260

    Article  Google Scholar 

  • Zarlavsky GE (2014) Histología Vegetal: Técnicas Simples y Complejas. Soc Argen Bot, Buenos Aires

    Google Scholar 

Download references

Funding

This research was financially supported by a grant (UBACyT 2013–2016 GC 20020120100056BA) to B. Galati. M. Gotelli and D. Medan are affiliated with CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina M. Gotelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Benedikt Kost

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotelli, M.M., Galati, B.G., Zarlavsky, G. et al. Structure of the style and pollen tube pathway in the Ziziphoid and Rhamnoid clades of Rhamnaceae. Protoplasma 255, 501–515 (2018). https://doi.org/10.1007/s00709-017-1167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1167-z

Keywords

Navigation