Advertisement

Protoplasma

, Volume 255, Issue 1, pp 263–272 | Cite as

Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae)

  • Tiago Ribeiro
  • Christopher E. Buddenhagen
  • W. Wayt Thomas
  • Gustavo Souza
  • Andrea Pedrosa-HarandEmail author
Original Article

Abstract

Karyotype evolution in species with non-localised centromeres (holocentric chromosomes) is usually very dynamic and associated with recurrent fission and fusion (also termed agmatoploidy/symploidy) events. In Rhynchospora (Cyperaceae), one of the most species-rich sedge genera, all analysed species have holocentric chromosomes and their numbers range from 2n = 4 to 2n = 84. Agmatoploidy/symploidy and polyploidy were suggested as the main processes in the reshuffling of Rhynchospora karyotypes, although testing different scenarios of chromosome number evolution in a phylogenetic framework has not been attempted until now. Here, we used maximum likelihood and model-based analyses, in combination with genome size estimation and ribosomal DNA distribution, to understand chromosome evolution in Rhynchospora. Overall, chromosome number variation showed a significant phylogenetic signal and the majority of the lineages maintained a karyotype of 2n = 10 (~48% of the species), the most likely candidate for the ancestral number of the genus. Higher and lower chromosome numbers were restricted to specific clades, whilst polyploidy and/or fusion/fission events were present in specific branches. Variation in genome size and ribosomal DNA site number showed no correlation with ploidy level or chromosome number. Although different mechanisms of karyotype evolution (polyploidy, fusion and fission) seem to be acting in distinct lineages, the degree of chromosome variation and the main mechanisms involved are comparable to those found in some monocentric genera and lower than expected for a holocentric genus.

Keywords

Agmatoploidy/symploidy Dysploidy Genome size Holokinetic Karyotype evolution Polyploidy rDNA 

Notes

Acknowledgements

We thank the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship to T. Ribeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowship to A. Pedrosa-Harand and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for the financial support (APQ-2008-2.02/12). We are also grateful to Aretuza Sousa (University of Munich, Germany) for the help with the plotting of ChromEvol output in R and André Vanzela (State University of Londrina, Paraná, Brazil) and Ana Carolina Galindo da Costa (Federal University of Pernambuco, Brazil) for collecting some species in the field.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2017_1154_Fig3_ESM.gif (190 kb)
Online Resource 1

Mitotic metaphases of R. globosa (2n = 50), R. elatior (2n = 12) and R. radicans (2n = 10) stained with DAPI. Bar = 5 μm. (GIF 190 kb)

709_2017_1154_MOESM1_ESM.tif (1.7 mb)
High Resolution Image (TIFF 1725 kb)
709_2017_1154_MOESM2_ESM.pdf (1.8 mb)
Online Resource 2 Ancestral character estimation of chromosome number (log-transformed maximum chromosome number count) along the branches and nodes of the phylogeny of the Rhynchospora (Cyperaceae). The colour of edges in the tree represents observed and reconstructed values for chromosome number on the tree. Red colours correspond with relatively low chromosome number, whereas dark blue colours represent larger observed and reconstructed chromosome sets. (PDF 1824 kb)
709_2017_1154_MOESM3_ESM.pdf (463 kb)
Online Resource 3 Ancestral state reconstruction of chromosome number (estimated in Mesquite) for the genus Rhynchospora. Haploid chromosome numbers are coloured according to legend. (PDF 463 kb)

References

  1. Ahola V, Lehtonen R, Somervuo P, Salmela L, Koshinen P, Rastas P et al (2014) The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun 5:4337. doi: https://doi.org/10.1038/ncomms5737 CrossRefGoogle Scholar
  2. Arguelho EG, Michelan VS, Nogueira FM, Da Silva CRM, Rodriguez C, Trevisan R, Vanzela ALL (2012) New chromosome counts in Brazilian species of Rhynchospora (Cyperaceae). Caryologia 65:140–146. doi: https://doi.org/10.1080/00087114.2012.711675 CrossRefGoogle Scholar
  3. Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome, 1st edn. Elsevier Academic Press, The Netherlands, pp 89-162Google Scholar
  4. Božek M, Leitch AR, Leitch IJ, Drábková LZ, Kuta E (2012) Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes. Bot J Linn Soc 170:529–541. doi: https://doi.org/10.1111/j.1095-8339.2012.01314.x CrossRefGoogle Scholar
  5. Buddenhagen CE (2016) A view of Rhynchosporeae (Cyperaceae) diversification before and after the application of anchored phylogenomics across the angiosperms. Dissertation, Florida State UniversityGoogle Scholar
  6. Buddenhagen CE, Thomas WW, Mast AR (2017) A First Look at Diversification of Beaksedges (Tribe Rhynchosporeae; Cyperaceae) in Habitat, Pollination, and Photosynthetic Features. Mem N Y Bot Gard 118:111–124. doi: https://doi.org/10.21135/893275341.002 
  7. Cabral G, Marques A, Schubert V, Pedrosa-Harand A, Schlögelhofer P (2014) Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun 5:5070. doi: https://doi.org/10.1038/ncomms6070 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carvalho CR, Saraiva LS (1993) An air dry technique for maize chromosomes without enzymatic maceration. Biotech Histochem 68:142–145CrossRefPubMedGoogle Scholar
  9. da Silva CRM, González-Elizondo MS, Vanzela ALL (2005) Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot J Linn Soc 149:457–464CrossRefGoogle Scholar
  10. da Silva CRM, González-Elizondo MS, Vanzela ALL (2008) Chromosome reduction in Eleocharis maculosa (Cyperaceae). Cytogenet Genome Res 122:175–180CrossRefPubMedGoogle Scholar
  11. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244CrossRefPubMedGoogle Scholar
  12. Drábková LZ (2013) A survey of karyological phenomena in the Juncaceae with emphasis on chromosome number variation and evolution. Bot Rev 79:401–446. doi: https://doi.org/10.1007/s12229-013-9127-6 CrossRefGoogle Scholar
  13. Escudero M, Hipp AL, Luceño M (2010) Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae). Mol Phylogenet Evol 57:353–363. doi: https://doi.org/10.1016/j.ympev.2010.07.009 CrossRefPubMedGoogle Scholar
  14. Escudero M, Hipp AL, Hansen TF, Voje KL, Luceño M (2012) Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol 195:237–247. doi: https://doi.org/10.1111/j.1469-8137.2012.04137.x CrossRefPubMedGoogle Scholar
  15. Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One 9:e85266. doi: https://doi.org/10.1371/journal.pone.0085266 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fonsêca A, Ferreira J, Santos TRB, Mosiolek M, Belluci E, Kami J, Gepts P, Geffroy V, Schweizer D, Santos KGB, Pedrosa-Harand A (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.) Chrom Res 18:487–502. doi: https://doi.org/10.1007/s10577-010-9129-8 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goldblatt P, Johnson DE (1979) Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. http://mobot.mobot.org/W3T/Search/ipcn.html. Accessed 22 July 2016
  19. Guerra M (2016) Agmatoploidy and symploidy: a critical review. Genet Mol Biol 39:492–496. doi: https://doi.org/10.1590/1678-4685-GMB-2016-0103 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heckmann S, Houben A (2013) Holokinetic centromeres. In: Jiang J, Bichler JA (eds) Plant centromere Biology, 1st edn. John Willey and Sons, New York, pp 83–94Google Scholar
  21. Hipp AL (2007) Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194CrossRefPubMedGoogle Scholar
  22. Hipp AL, Rothrock PE, Roalson EH (2009) The evolution of chromosome arrangements in Carex (Cyperaceae). Bot Rev 75:96–109. doi: https://doi.org/10.1007/s12229-008-9022-8 CrossRefGoogle Scholar
  23. Jankowska M, Fuchs J, Klocke E, Fojtová M, Polanská P, Fajkus J, Schubert V, Houben A (2015) Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124:519–528. doi: https://doi.org/10.1007/s00412-015-0524-y CrossRefPubMedGoogle Scholar
  24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol 100:109–123. doi: https://doi.org/10.1016/j.ympev.2016.04.009 CrossRefPubMedGoogle Scholar
  26. Lipnerová I, Bureš P, Horová L, Šmarda P (2012) Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Ann Bot 111:79–94. doi: https://doi.org/10.1093/aob/mcs239 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888. doi: https://doi.org/10.1093/aob/mcm152 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Luceño M, Martín J (1986) Cyperaceae Vahl. In: Castroviejo S, Luceño M, Galán A, Jiménez Mejías P, Cabezas F, Medina L (eds) Flora Iberica. Plantas vasculares de la Península Ibérica e Islas Baleares, vol 18. Real Jardín Botánico, Madrid, pp 99–102Google Scholar
  29. Luceño M, Mendes AP, Vanzela ALL, Alves MV (1998a) Agmatoploidy and symploidy in Rhynchospora cephalotes (L.) Vahl (Cyperaceae). Cytologia 63:79–81CrossRefGoogle Scholar
  30. Luceño M, Vanzela ALL, Guerra M (1998b) Cytotaxomonic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can J Bot 76:440–449Google Scholar
  31. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org
  32. Marques A, Ribeiro T, Neumann P, Macas J, Novák P, Schubert V, Pellino M, Fuchs J, Ma W, Kuhlmann M, Brandt R, Vanzela ALL, Beseda T, Šimková H, Pedrosa-Harand A, Houben A (2015) Holocentromeres in are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. PNAS 112:13633–13638. doi: https://doi.org/10.1073/pnas.1512255112
  33. Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144. doi: https://doi.org/10.1093/sysbio/syp083 CrossRefPubMedGoogle Scholar
  34. Melters DP, Paliulis LV, Korf IF, Chan SWL (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations and genomic analysis. Chrom Res 20:579–593. doi: https://doi.org/10.1007/s10577-012-9292-1 CrossRefPubMedGoogle Scholar
  35. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefPubMedGoogle Scholar
  36. Pellicer J, Kelly LJ, Magdalena C, Leitch IJ (2013) Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome 56:437–449. doi: https://doi.org/10.1139/gen-2013-0039 CrossRefPubMedGoogle Scholar
  37. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. doi: https://doi.org/10.1093/molbev/msn083 CrossRefPubMedGoogle Scholar
  38. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  39. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. doi: https://doi.org/10.1111/j.2041-210X.2011.00169.x CrossRefGoogle Scholar
  40. Ribeiro T, Marques A, Novák P, Schubert V, Vanzela ALL, Macas J, Houben A, Pedrosa-Harand A (2016) Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 126:325–335. doi: https://doi.org/10.1007/s00412-016-0616-3 CrossRefPubMedGoogle Scholar
  41. Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225. doi: https://doi.org/10.1186/1471-2148-12-225 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Roalson EH (2008) A synopsis of chromosome number variation in the Cyperaceae. Bot Rev 74:209–393. doi: https://doi.org/10.1007/s12229-008-9011-y CrossRefGoogle Scholar
  43. Roalson EH, McCubbin AG, Whitkus R (2007) Chromosome evolution in Cyperales. Aliso 23:62–71. doi: https://doi.org/10.5642/aliso.20072301.08 CrossRefGoogle Scholar
  44. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  45. Ruban A, Fuchs J, Marques A, Schubert V, Soloviev A, Raskina O, Badaeva E, Houben A (2014) B chromosomes of Aegilops speltoides are enriched in organelle genome-derived sequences. PLoS One 9:2. doi: https://doi.org/10.1371/journal.pone.0090214 CrossRefGoogle Scholar
  46. Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115CrossRefPubMedGoogle Scholar
  47. Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. TIG 27:207–216. doi: https://doi.org/10.1016/j.tig.2011.03.004 CrossRefPubMedGoogle Scholar
  48. Sousa A, Barros e Silva AE, Cuadrado A, Loarce Y, Alves MV, Guerra M (2011) Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron 42:625–631. doi: https://doi.org/10.1016/j.micron.2011.03.002 CrossRefPubMedGoogle Scholar
  49. Sousa A, Cusimano N, Renner S (2014) Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Ann Bot 113:669–680. doi: https://doi.org/10.1093/aob/mct302 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  51. Vanzela ALL, Colaço W (2002) Mitotic and meiotic behavior of γ irradiated holocentric chromosomes of Rhynchospora pubera (Cyperaceae). Acta Sci 24:611–614Google Scholar
  52. Vanzela ALL, Guerra M, Luceño M (1996) Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios 88:219–228Google Scholar
  53. Vanzela ALL, Cuadrado A, Jouve L, Luceño M, Guerra M (1998) Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chrom Res 6:345–350CrossRefPubMedGoogle Scholar
  54. Vanzela ALL, Luceño M, Guerra M (2000) Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot J Linn Soc 134:557–566CrossRefGoogle Scholar
  55. Vanzela ALL, Cuadrado A, Guerra M (2003) Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet Mol Biol 26:199–201CrossRefGoogle Scholar
  56. Yano O, Hoshino T (2006) Phylogenetic relationships and chromosomal evolution of Japanese Fimbristylis (Cyperaceae) using nrDNA ITS and ETS 1f sequence data. Acta Phytotax Geobot 57:205–217Google Scholar
  57. Yoshido A, Yasukochi Y, Sahara K (2011) Samia Cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera. Insect Biochem Molec Biol 41:370–377. doi: https://doi.org/10.1016/j.ibmb.2011.02.005 CrossRefGoogle Scholar
  58. Zedek F, Šmerda J, Šmarda P, Bureš P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução VegetalUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Department of Biological ScienceFlorida State UniversityTallahasseeUSA
  3. 3.New York Botanical GardenBronxUSA

Personalised recommendations