, Volume 254, Issue 6, pp 2055–2070 | Cite as

A molecular insight into papaya leaf curl—a severe viral disease

  • Priyanka Varun
  • S. A. Ranade
  • Sangeeta Saxena
Review Article


Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.


Beta-satellite Geminiviruses Papaya leaf curl disease Papaya leaf curl virus Resistance strategies Viral genome 



Priyanka Varun and Sangeeta Saxena gratefully acknowledge Rajiv Gandhi National Fellowship from University Grants Commission (UGC), Govt. of India, and partial support from UGC, New Delhi, Govt. of India, Major Research Project (MRP) No. 37-485/2009 (SR), respectively. Authors acknowledge Babasaheb Bhimrao Ambedkar University-A Central University, Lucknow, India, for the support and necessary infrastructure facilities provided for the above research.

Supplementary material

709_2017_1126_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb).
709_2017_1126_MOESM2_ESM.docx (78 kb)
ESM 2 (DOCX 77 kb).


  1. Alemandri V, De Barro P, Bejerman N, Caro EA, Dumón AD, Mattio MF, Rodriguez SM, Truol G (2012) Species within the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in soybean and bean crops in Argentina. J Econ Entomol 105(1):48–53PubMedCrossRefGoogle Scholar
  2. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anandlakshmi R, Pruss GJ, Ge X (1998) A viral suppressor of gene silencing in plant. Proc Natl Acad Sci U S A 95(22):13079–13084CrossRefGoogle Scholar
  4. Araujo MMM, Tavares ET, Da Silva FR, Marinho VLA, Souza JMT (2007) Molecular detection of papaya meleira virus in the latex of Carica papaya by RT-PCR. J Virol Methods 146:305–310PubMedCrossRefGoogle Scholar
  5. Azad MA, Amin L, Sidik NM (2014) Gene technology for papaya ringspot virus disease management. The Sci World J. doi: 10.1155/2014/768038 Google Scholar
  6. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants 1:15145CrossRefGoogle Scholar
  7. Bau HJ, Kung YJ, Raja J, Chan SJ, Chen KC, Chen YK, Wu HW, Yeh SD (2008) Potential threat of a new pathotype of papaya leaf distortion mosaic virus infecting transgenic papaya resistant to papaya ring spot virus. Phytopathology 98:848–856PubMedCrossRefGoogle Scholar
  8. Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363PubMedCrossRefGoogle Scholar
  9. Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8(10):1833–1844PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33(2):351–357PubMedCrossRefGoogle Scholar
  11. Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168PubMedCrossRefGoogle Scholar
  12. Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-βsatellites of begomoviruses. Arch Virol 153:763–781PubMedCrossRefGoogle Scholar
  13. Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA β: a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20:315–318PubMedCrossRefGoogle Scholar
  14. Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas Castillo J (2012) Geminiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, London, pp 351–373Google Scholar
  15. Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L (1996) Viruses of plants. CAB International, WellingfordGoogle Scholar
  16. Byun HS, Kil EJ, Seo H, Suh SS, Lee TK, Lee JH, Kim JK, Lee KY, Ko SJ et al (2016) First report of papaya leaf curl virus in papayas in Korea and recovery of its symptoms. Plant Dis 100(9):1958CrossRefGoogle Scholar
  17. Capoor SP (1981) Viral and virus-like diseases of crops and their control. ICAR Bulletin, Revised edition 1981:13–14Google Scholar
  18. Carrazana NJ, González-de-León D, Ruiz-Castro B, Piñero D, Silva-Rosales L (2006) Distribution of papaya ring spot virus and papaya mosaic virus in papaya plants (Carica papaya) in Mexico. Plant Dis 90:1004–1011CrossRefGoogle Scholar
  19. Chang LS, Lee YS, Su HJ, Hung TH (2003) First report of papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis 87(2):204CrossRefGoogle Scholar
  20. Chen HM, Lin CY, Tsai WS, Kenyon L, Chan MT, Yen JY, Chang SY, Peña RDL, Schafleitner R (2016b) Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains. J Plant Biochem Biotechnol 25(2):199–207CrossRefGoogle Scholar
  21. Chen YK, Chao HY, Shih PJ, Tsai WY, Chao CH (2016a) First report of papaya leaf curl Guangdong virus infecting Lisianthus in Taiwan. APS, Dis Notes 100(11):2342Google Scholar
  22. Chowda-Reddy RV, Kirankumar M, Seal SE, Muniyappa V, Valand GB, Govindappa MR, Colvin J (2012) Bemisia tabaci Phylogenetic groups in India and the relative transmission efficacy of tomato leaf curl Bangalore virus by an indigenous and an exotic population. J Integ Agric 11(2):235–248CrossRefGoogle Scholar
  23. Conover RA (1962) Virus diseases of the papaya in Florida. Phytopathology 52:6Google Scholar
  24. Conover RA, Litz RE (1978) Progress in breeding papayas with tolerance to papaya ringspot virus. Proc. Fla. State Hort Soc 91:182–184Google Scholar
  25. Daltro CB, PereiraII ÁJ, Cascardo RS, Alfenas-Zerbini P, Bezerra-Junior JEA, Lima JAA, Zerbini FM, Andrade EC (2012) Genetic variability of papaya lethal yellowing virus isolates from Ceará and Rio Grande do Norte states, Brazil. Trop Plant Pathol 37:37–43CrossRefGoogle Scholar
  26. David RJ (2003) Plant viruses transmitted by whiteflies. Eur J of Plant Pathol 109:195–219CrossRefGoogle Scholar
  27. Davis MJ, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to papaya ringspot virus. Plant Dis 88:352–358CrossRefGoogle Scholar
  28. Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88(15):6721–6725PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19PubMedCrossRefGoogle Scholar
  30. De Bokx JA (1965) Hosts and electron microscopy of two papaya viruses. Plant Dis Rep 49:742–746Google Scholar
  31. Descriptions of plant viruses (2016); Accessed 20 Dec 2016
  32. Dubey DK, Tiwari AK, Upadhyay PP (2015) Survey, incidence and serological identification of papaya leaf curl virus in eastern Uttar Pradesh. Indian phytopath 68(1):123–126Google Scholar
  33. Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic papaya provides practical control of papaya ring spot virus in Hawaii. Plant Dis 86(2):101–105CrossRefGoogle Scholar
  34. Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8(6):655–677PubMedCrossRefGoogle Scholar
  35. Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212PubMedCrossRefGoogle Scholar
  36. Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437PubMedCrossRefGoogle Scholar
  37. Gonsalves D (2006) Transgenic papaya: development, release, impact, and challenges. Adv Virus Res 67:317–354PubMedCrossRefGoogle Scholar
  38. Guo T, Guo Q, Cui X, Liu Y et al (2015) Comparison of transmission of papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci Complex. Sci Rep 5:15432. doi: 10.1038/srep15432 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hallan V, Saxena S, Singh BP (1998) Short communication: ageratum, croton and Malvastrum harbour geminiviruses: evidence through PCR amplification. World J Microbiol Biotechnol 14:931–932CrossRefGoogle Scholar
  40. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286:950–952PubMedCrossRefGoogle Scholar
  41. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106CrossRefGoogle Scholar
  42. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251PubMedCrossRefGoogle Scholar
  43. Hanson P, Lu SF, Wang JF, Chen W, Kenyon L, Tan CW, Tee KL, Wang YY, Hsu YC, Schafleitner R, Ledesma D (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic 201:346–354CrossRefGoogle Scholar
  44. Harrison BD (1985) Advances in geminivirus research. Annu Rev Phytopathol 23:55–82CrossRefGoogle Scholar
  45. Haung JF, Zhou XP (2006) First report of papaya leaf curl China virus infecting Corchoropsis timentosa in China. Plant Pathol 55:291CrossRefGoogle Scholar
  46. Hemambara HS, Yogesh MS (2014) Production and marketing problems of papaya growers in north Karnataka. IOSR-JBM 16(7):20–23Google Scholar
  47. Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu S (2011) An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 6:e16061PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hull R (2002) Matthews’ plant virology. Academic Press, London, p 1001Google Scholar
  49. Ilyas M, Qazi J, Mansoor S, Briddon RW (2010) Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J Gen Virol 91:2091–2101PubMedCrossRefGoogle Scholar
  50. Indian Horticulture Database. Ed. Saxena M and Gandhi C P (2015) National Horticulture Board, Ministry of Agriculture, Government of India, Gurgaon. Pages 248. (URL:; Accessed 22 June 2016
  51. Jenson DD (1949) Papaya ring spot virus and its insect vector relationship. Phytopathology 39:212–220Google Scholar
  52. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nature Plants 1:144CrossRefGoogle Scholar
  53. Kawano S, Yonaha T (1992) The occurrence of papaya leaf distortion mosaic virus in Okinawa. FFTC Tech Bull 132:13–23Google Scholar
  54. Khatoon S, Kumar A, Sarin NB, Khan JA (2016) RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes 52:530–537PubMedCrossRefGoogle Scholar
  55. Koeda S, Takisawa R, Nabeshima T, Tanaka Y, Kitajima A (2015) Production of tomato yellow leaf curl virus-free parthenocarpic tomato plants by leaf primordia-free shoot apical meristem culture combined with in vitro grafting. The Hortic J 84:327–333CrossRefGoogle Scholar
  56. Kumar J, Kumar A, Khan JA, Aminuddin JA (2009) First report of papaya leaf curl virus naturally infecting tobacco in India. J Plant Path 91(4 - Supplement):S4 107Google Scholar
  57. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 22:msw054 Accessed 4 September 2016Google Scholar
  58. Kumar SP, Patel SK, Kapopara RG, YogeshT JYT, Pandya HA (2012) Evolutionary and molecular aspects of Indian tomato leaf curl virus coat protein. Int J Plant Genomics. doi: 10.1155/2012/417935 Google Scholar
  59. Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann App Biol 140(2):109–127CrossRefGoogle Scholar
  60. Lee W, Park J, Lee GS, Seunghwan LS, Akimoto SI (2013) Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8(5):e63817PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lindbo JL, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5(12):1749–1759PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lius S, Manshardt RM, Fitch MMM, Slightom JL, Sanford JC, Gonsalves D (1997) Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol Breed 3:161–168CrossRefGoogle Scholar
  63. Meena RK, Gour K, Patni V (2014) Production of leaf curl virus-free chilli by meristem tip culture. Int. J. Pharm. Sci Rev Res 25:67–71Google Scholar
  64. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ming R, Yu Q, Moore PH, Paull RE, Chen NJ, Wang ML et al (2012) Genome of papaya, a fast growing tropical fruit tree. Tree Genet Genomes 8:445–462CrossRefGoogle Scholar
  66. Mishra M, Chandra R, Saxena S (2007) Papaya. In: Kole C (ed) Genome mapping and molecular breeding in plants- fruits and nuts, vol 4. Springer, USA, pp 230–257Google Scholar
  67. Nadeem A, Mehmood T, Tahir M, Khalid S, Xiong Z (1997) First report of papaya leaf curl disease in Pakistan. Plant Dis 81(11):1333CrossRefGoogle Scholar
  68. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nariani TK (1956) Leaf curl of papaya. Indian Phytopathol 9:151–155Google Scholar
  70. Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72(12):10050–10057PubMedPubMedCentralGoogle Scholar
  71. Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76(5):925–932PubMedCrossRefGoogle Scholar
  72. Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35PubMedCrossRefGoogle Scholar
  73. Papaya production statistics from Food and Agricultural Organization of United Nations 2016: Economic and Social Department: The Statistical Division. UN FAO Corporate Statistical Database (; Accessed 22 June 2016
  74. Raj SK, Snehi SK, Khan MS, Singh R, Khan AA (2008) Molecular evidence for association of tomato leaf curl New Delhi virus with leaf curl disease of papaya (Carica papaya L.) in India. Australasian Plant Dis Notes 3:152–155CrossRefGoogle Scholar
  75. Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276(5318):1558–1560PubMedCrossRefGoogle Scholar
  76. Rojas MR (1999) Characterization of potyvirus and gemini virus movement proteins. Ph.D. thesis. University of California-Davis, DavisGoogle Scholar
  77. Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly transmitted geminiviruses. Plant Dis 77:340–347CrossRefGoogle Scholar
  78. Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291:110–125PubMedCrossRefGoogle Scholar
  79. Sagar SB, Parmar HC, Darji VB (2012) Economics of production of papaya in middle Gujarat region of Gujarat, India. GJBAHS 1(2):10–17Google Scholar
  80. Saxena S, Chandra R, Srivastava AP, Mishra M, Pathak RK, Ranade SA (2005) Analysis of genetic diversity among papaya cultivars using single primer amplification reaction (SPAR) methods. J Hortic Sci Tech 80(3):291–296Google Scholar
  81. Saxena S, Hallan V, Singh BP, Sane PV (1998a) Leaf curl disease of Carica papaya from India may be caused by a bipartite geminivirus. Plant Dis 82(1):126CrossRefGoogle Scholar
  82. Saxena S, Hallan V, Singh BP, Sane PV (1998b) Evidence from nucleic acid hybridization tests for a geminivirus infection causing leaf curl disease of papaya in India. Indian J Exp Biol 36:229–232Google Scholar
  83. Saxena S, Hallan V, Singh BP, Sane PV (1998c) Nucleotide sequence and inter-geminiviral homologies of the DNA a of papaya leaf curl geminivirus from India. Biochem Mol Biol Int 45:101–113PubMedGoogle Scholar
  84. Saxena S, Rupesh KK, Singh V (2013) Designing of putative siRNA against geminiviral suppressors of RNAi to develop geminivirus-resistant papaya crop. Int J Bioinforma Res Appl 9(1):3–12CrossRefGoogle Scholar
  85. Saxena S, Singh N, Ranade SA, Sunil GB (2011) Strategy for generic resistance to geminiviruses infecting tomato and papaya through in silico siRNA search. Virus Genes 43:409–434PubMedCrossRefGoogle Scholar
  86. Saxena S, Singh VK, Verma S (2016) PCR mediated detection of sex and PaLCuV infection in papaya- a rewiew. J Appl Hortic 18(1):80–84Google Scholar
  87. Shahid MS, Yoshida S, Khatri-Chhetri GB, Briddon RW, Natsuaki KT (2013) Complete nucleotide sequence of a monopartite begomovirus and associated satellites infecting Carica papaya in Nepal. Virus Genes 46:581–584PubMedCrossRefGoogle Scholar
  88. Silva AMR, Kitajima EW, Sousa MU, Resende RO (1997) Papaya lethal yellowing virus: a possible member of the Tombusvirus genus. Fitopatol Bras 22:529–534Google Scholar
  89. Sinha DP, Saxena S, Singh M, Tiwari SK (2013) Phylogenetic relationship of coat protein genomic components of Chilli leaf curl virus. Vegetable Science 40(2):149–154Google Scholar
  90. Srivastava A, Jaidi M, Kumar S, Raj SK, Shukla S (2015) Association of papaya leaf curl virus with the leaf curl disease of grain amaranth (Amaranthus cruentus L.) in India. Phytoparasitica 43:97–101CrossRefGoogle Scholar
  91. Srivastava A, Raj SK, Kumar S, Snehi SK (2013) New record of papaya leaf curl virus and ageratum leaf curl beta-satellite associated with yellow vein disease of aster in India. New Dis Rep 28:6CrossRefGoogle Scholar
  92. Srivastava N, Chandra R, Saxena S, Bajpai A (2010) PCR based amplification and detection of papaya leaf curl virus (PaLCuV). A proceeding of IInd IS on papaya. Acta hort 851:241–245CrossRefGoogle Scholar
  93. Sudarshana MR, Wang HL, Lucas WJ, Gilbertson RL (1998) Dynamics of bean dwarf mosaic gemini virus cell-to-cell and longdistance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol Plant-Microbe Interact 11:277–291CrossRefGoogle Scholar
  94. Tang G, Galili G, Zhuang X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369CrossRefGoogle Scholar
  95. Taylor DR (2001) Virus diseases of Carica papaya in Africa—their distribution, importance, and control. Rice Research Station, PMB 736, Freetown, Sierra Leone, Plant virology in sub-Saharan AfricaGoogle Scholar
  96. Thomas KM, Krishnaswamy CS (1939) Leaf crinkle: a transmissible disease of papaya. Curr Sci 8:316Google Scholar
  97. Ueda S, Kitamura T, Kijima K, Honda KI, Kanmiya K (2008) Distribution and molecular characterization of distinct Asian populations of Bemisiatabaci (Hemiptera: Aleyrodidae) in Japan. J Appl Entomol 133:355–366CrossRefGoogle Scholar
  98. Vanderschuren H, Akbergenov R, Pooggin M, Hohn T, Gruissem W, Zhang P (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64(5):549–557PubMedCrossRefGoogle Scholar
  99. Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70(3):265–272PubMedCrossRefGoogle Scholar
  100. Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151PubMedCrossRefGoogle Scholar
  101. Varma A, Mandal B, Singh MK (2011) Global emergence and spread of whitefly (Bemisia tabaci) transmitted geminiviruses. In the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer Netherlands, pp 205-292Google Scholar
  102. Vidal CA (2005) Transmissão do vírus da meleira do mamoeiro (Carica papayal.) porinsetos. Magistra 17:101–106Google Scholar
  103. Vu TV, Choudhury NR, Mukherjee SK (2012) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45PubMedCrossRefGoogle Scholar
  104. Wang X, Xie Y, Zhou X (2004) Molecular characterization of two distinct begomoviruses from papaya in China. Virus Genes 29(3):303–309PubMedCrossRefGoogle Scholar
  105. Yang CX, Luo JS, Zheng LM, Wu ZJ, Xie LH (2011) Mixed infection of papaya leaf curl China virus and Siegesbeckia yellow vein virus in Siegesbeckia orientalis in China. J Plant Pathol 93(4, Supplement):S4 81Google Scholar
  106. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of tomato yellow leaf curl virus Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94(5):490–496PubMedCrossRefGoogle Scholar
  107. Yonaha T, Yonemori S, Tamori M (1976) Relation between the flight occurrence of alate aphids and the spread of papaya virus disease in the field. Okinawa Agric 14:7–15Google Scholar
  108. Zaidi SS, Mansoor S, Ali Z, Tashkandi M, Mahfouz MM (2016) Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends Plant Sci 21:279–281PubMedCrossRefGoogle Scholar
  109. Zhang H, Ma XY, Qian YJ, Zhou XP (2010) Molecular characterization and infectivity of papaya leaf curl China virus infecting tomato in China. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 11(2):109–114CrossRefGoogle Scholar
  110. Zhang W, Vanderschuren H, Futterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3(4):385–397PubMedCrossRefGoogle Scholar
  111. Zhou XP, Xie Y, Tao XR, Zhang KZ, Li ZH, Fauquet CM (2003) Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Bioscience and BiotechnologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Genetics and Molecular Biology DepartmentCSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations