Abstract
By a detailed ontogenetic study of Polemonium caeruleum pollen, tracing each stage of development at high TEM resolution, we aim to understand the establishment of the pollen wall and to unravel the mechanisms underlying sporoderm development. The main steps of exine ontogeny in Polemonium caeruleum, observed in the microspore periplasmic space, are spherical units, gradually transforming into columns, then to rod-like units (procolumellae), the appearance of the initial tectum, growth of columellae in height and tectum in thickness and initial sporopollenin accumulation on them, the appearance of the endexine lamellae and of dark-contrasted particles on the tectum, the appearance of a sponge-like layer and of the intine in aperture sites, the appearance of the foot layer on the base of the sponge-like layer and of spinules on the tectum, and massive sporopollenin accumulation. This sequence of developmental events fits well to the sequence of self-assembling micellar mesophases. This gives (together with earlier findings and experimental exine simulations) strong evidence that genome and self-assembly probably share control of exine formation. It is highly probable that self-assembly is an intrinsic instrument of evolution.
Similar content being viewed by others
Abbreviations
- ER:
-
Endoplasmic reticulum
- RER:
-
Rough endoplasmic reticulum
- SAPs:
-
SP-acceptor particles
- SEM:
-
Scanning electron microscope
- TEM:
-
Transmission electron microscope
- SP:
-
Sporopollenin
References
Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channelling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109
Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Ann Rev Plant Biol 62:437–460
Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39:170–181. doi:10.1111/j.1365-313X.2004.02118.x
Audran J-C (1981) Pollen and tapetum development in Ceratozamia mexicana (Cycadaceae): sporal origin of the exinic sporopollenin in cycads. Rev Palaeobot Palynol 33:315–346
Ball P (1994) Designing the molecular world. Princeton University Press, Princeton
Benítez M (2013) An interdisciplinary view on dynamic models for plant genetics and morphogenesis: scope, examples and emerging research avenues. Front Plant Sci 4:7. doi:10.3389/fpls.2013.00007
Blackmore S, Barnes SH (1987) Pollen wall morphogenesis in Tragopogon porrifolius L. (Compositae: Lactuceae) and its taxonomic significance. Rev Palaeobot Palynol 52:233–246
Blackmore S, Claugher D (1987) Observations on the substructural organization of the exine in Fagus sylvatica L. (Fagaceae) and Scorzonera hispanica L. (Compositae: Lactuceae). Rev Palaeobot Palynol 5:175–184
Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498
Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Nat Acad Sci USA 96:12929–12934
Chen W et al (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853
Collinson ME, Hemsley AR, Taylor WA (1993) Sporopollenin exhibiting colloidal organization in spore walls. Grana Suppl 1:31–39
de Leeuw JW, Versteegh GJM, van Bergen PF (2006) Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol 182:209–233
Dickinson HG (1970) Ultrastructural aspects of primexine formation in the microspore tetrad of Lilium longiflorum. Cytobiologie 1:437–449
Dickinson HG (1976) Common factors in exine deposition. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 67–89
Dickinson HG, Potter U (1976) The development of patterning in the alveolar sexine of Cosmos bipinnatus. New Phytol 76:543–550
Dickinson HG, Sheldon JM (1986) The generation of patterning at the plasma membrane of the young microspore of Lilium. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Linn Soc Symp Ser, no. 12. Academic Press, London, pp 1–18
Dobritsa AA et al (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589
Dobritsa AA, Geanconteri A, Shrestha J et al (2011) A large-scale genetic screen in Arabidopsis to identify genes involved in pollen Exine production. Pl Physiol (Lancaster) 157:947–970. doi:10.1104/pp.111.179523
Echlin P (1971) The role of the tapetum during microsporogenesis of angiosperms. In: Heslop-Harrison J (ed) Pollen development and physiology. Butterworths, London, pp 41–61
Fridrichsberg DA (1995) Colloidal chemistry. Chemistry, St.-Petersburg
Gabarayeva NI (1990) Hypothetical ways of exine structure determination. Botanicheski Zhurnal 75:1353–1362 (in Russian, with English abstract)
Gabarayeva NI (1991) Patterns of development in primitive angiosperm pollen. In: Blackmore S, Barnes SH (eds) Pollen and spores. Clarendon Press, Oxford, pp 257–268
Gabarayeva NI (1993) Hypothetical ways of exine pattern determination. Grana 33(Suppl 2):54–59
Gabarayeva NI (1995) Pollen wall and tapetum development in Anaxagorea brevipes (Annonaceae): sporoderm substructure, cytoskeleton, sporopollenin precursor particles, and the endexine problem. Rev Palaeobot Palynol 85:123–152
Gabarayeva NI (1996) Sporoderm development in Liriodendron chinense (Magnoliaceae): a probable role of the endoplasmic reticulum. Nordic J Bot 16:1–17
Gabarayeva NI (2000) Principles and recurrent themes in sporoderm development. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp 1–17
Gabarayeva NI (2014) Role of genetic control and self-assembly in gametophyte sporoderm ontogeny: hypotheses and experiment. Russian J Develop Biol 45:177–195
Gabarayeva NI, Grigorjeva VV (2002) Exine development in Stangeria eriopus (Stangeriaceae): ultrastructure and substructure, SP accumulation, the equivocal character of the aperture, and stereology of microspore organelles. Rev Palaeob Palynol 122:185–218
Gabarayeva NI, Grigorjeva VV (2004) Exine development in Encephalartos altensteinii (Cycadaceae): ultrastructure, substructure and the modes of SP accumulation. Rev Palaeobot Palynol 132:175–193
Gabarayeva NI, Grigorjeva VV (2010) Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae). Self-assembly as the underlying cause of development. Grana 49:91–114
Gabarayeva NI, Grigorjeva VV (2011) Sporoderm development in Swida alba (Cornaceae), interpreted as a self-assembling colloidal system. Grana 50:81–101
Gabarayeva NI, Grigorjeva VV (2012) Sporoderm development and substructure in Magnolia sieboldii and other Magnoliaceae: an interpretation. Grana 51:119–147
Gabarayeva NI, Grigorjeva VV (2013) Experimental modelling of exine-like structures. Grana 52:241–257. doi:10.1080/00173134.2013.818165
Gabarayeva NI, Grigorjeva VV (2014) Sporoderm and tapetum development in Eupomatia laurina (Eupomatiaceae). An interpretation Protoplasma 251:1321–1345
Gabarayeva N, Grigorjeva V (2016) Simulation of exine patterns by self-assembly. Pl Syst Evol 302:1135–1156. doi:10.1007/s00606-016-1322-6
Gabarayeva NI, Hemsley AR (2006) Merging concepts: the role of self-assembly in the development of pollen wall structure. Rev Palaeobot Palynol 138:121–139
Gabarayeva NI, Rowley JR (1994) Exine development in Nymphaea Colorata (Nymphaeaceae). Nord J Bot 14:671–691
Gabarayeva NI, Rowley JR, Skvarla JJ (1998) Exine development in Borago (Boraginaceae). 1. Microspore tetrad period. Taiwania 43:203–214
Gabarayeva NI, Blackmore S, Rowley JR (2003a) Observations on the experimental destruction and on substructural organization of the pollen wall of some selected gymnosperms and angiosperms. Rev Palaeobot Palynol 124:203–226
Gabarayeva NI, Grigorjeva VV, Rowley JR (2003b) Sporoderm ontogeny in Cabomba aquatica (Cabombaceae). Rev Palaeobot Palynol 127:147–173
Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR (2009a) Sporoderm development in Trevesia burckii (Araliaceae). I. Tetrad period: further evidence for the participation of self-assembly processes. Rev Palaeobot Palynol 156:211–232
Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR (2009b) Sporoderm development in Trevesia burckii (Araliaceae). II. Post-tetrad period: further evidence for participating of self-assembly processes. Rev Palaeob Palynol 156:233–247
Gabarayeva NI, Grigorjeva VV, Rowley JR (2010a) A new look at sporoderm ontogeny in Persea americana. Micelles and the hidden side of development. Ann Bot 105:939–955
Gabarayeva NI, Grigorjeva VV, Rowley JR (2010b) Sporoderm development in Acer tataricum (Aceraceae). An interpretation. Protoplasma 247:65–81
Gabarayeva NI, Grigorjeva VV, Polevova SV (2011a) Exine and tapetum development in Symphytum officinale (Boraginaceae). Exine substructure and its interpretation. Plant Syst Evol 296:101–120
Gabarayeva NI, Grigorjeva VV, Marquez G (2011b) Ultrastructure and development during meiosis and the tetrad period of sporogenesis in the leptosporangiate fern Alsophila setosa (Cyatheaceae) compared with corresponding stages in Psilotum nudum (Psilotaceae). Grana 50:235–262
Gabarayeva NI, Grigorjeva V, Kosenko Y (2013a) I. Primexine development in Passiflora racemosa Brot. Overlooked aspects of development. Plant Syst Evol 299:1013–1035
Gabarayeva N, Grigorjeva V, Kosenko Y (2013b) II. Exine development in Passiflora racemosa Brot.: post-tetrad period. Overlooked aspects of development. Plant Syst Evol 299:1037–1055
Gabarayeva N, Grigorjeva V, Polevova S (2014) Sporoderm and tapetum ontogeny in Juniperus communis (Cupressaceae). Connective structures between tapetum and microspores. Rev Palaeobot Palynol 206:23–44
Gabarayeva NI, Grigorjeva VV, Blackmore S (2016) Pollen wall substructure and development in Tanacetum vulgare (Compositae: Anthemideae): revisiting hypotheses on pattern formation in complex cell walls. Int J Plant Sci 177:347–370. doi:10.1086/684946
Gabarayeva N, Grigorjeva V, Polevova S, Hemsley AR (2017) Pollen wall and tapetum development in Plantago major (Plantaginaceae): assisting self-assembly. Grana 56:81–111. doi:10.1080/ 00173134.2016.1159729
Gerasimova-Navashina EN (1973) Physico-chemical nature of primexine formation of angiosperm pollen grains. In: Kovarski A (ed) Embryology of angiosperms. Ştiinţǎ, Kishinev, pp 57–70
Geyer G (1973) Ultrahistochemie. Veb Gustav Fischer Verlag, Jena
Goodwin TW, Mercer EI (1983) Introduction to plant biochemistry. Pergamon, Oxford
Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza CA, Heitz T, Douglas CJ, Legrand M (2010) Analysis of tetraketide α-pyrone reductase function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Pl Cell 22:4067–4083. doi:10.1105/tpc.110.080036
Griffiths PC, Hemsley AR (2001) Rasberries and muffins—mimicking biological pattern formation. Colloids and Surfaces B Biointerfaces 25:163–170
Grigorjeva V, Gabarayeva N (2015) The development of sporoderm, tapetum and Ubisch bodies in Dianthus deltoides (Caryophyllaceae): self-assembly in action. Rev Palaeobot Palynol 219:1–27
Gubatz S, Wiermann R (1992) Studies on sporopollenin biosynthesis in Tulipa anthers. 3. Incorporation of specifically labeled C-14 phenylalanine in comparison to other precursors. Bot Acta 105:407–413
Gubatz S, Wiermann R (1993) Studies on sporopollenin biosynthesis in Cucurbita maxima. 1. The substantial labeling of sporopollenin from Cucurbita maxima after application of [C-14] phenylalanine. J Biosci 48:10–15
Gubatz S, Herminghaus S, Meurer B, Strack D, Wiermann R (1986) The location of hydroxycinnamic acid amides in the exine of Corylus pollen. Pollen Spores 28:347–354
Gubatz S, Rittscher M, Meuter A, Nagler A, Wiermann R (1993) Tracer experiments on sporopollenin biosynthesis. Grana Suppl 1:12–17
Halbritter H, Svojtka M (2005) Polemonium caeruleum. In: PalDat (2005–06-01)—a palynological database
Hemsley AR (1998) Nonlinear variation in simulated complex pattern development. J Theor Biol 192:73–79
Hemsley AR, Gabarayeva NI (2007) Exine development: the importance of looking through a colloid chemistry “window”. Plant Syst Evol 263:25–49
Hemsley AR, Griffiths PC (2000) Architecture in the microcosm: biocolloids, self-assembly and pattern formation. Phil Trans R Soc Lond A 358:547–564
Hemsley AR, Chaloner WG, Scott AC, Groombridge CJ (1992a) Carbon-13 solid-state nuclear magnetic resonance of sporopollenins from modern and fossil plants. Ann Bot (Oxford) 69:545–549
Hemsley AR, Collinson ME, Brain APR (1992b) Colloidal crystal-like structure of sporopollenin in the megaspore walls of recent Selaginella and similar fossil spores. Bot J Linn Soc 108:307–320
Hemsley AR, Barrie PJ, Chaloner WG, Scott AC (1993) The composition of sporopollenin: its contribution to living and fossil spore systematics. Grana Suppl 1:2–11
Hemsley AR, Jenkins PD, Collinson ME, Vincent B (1996a) Experimental modelling of exine self-assembly. Bot J Linn Soc 121:177–187
Hemsley AR, Scott AC, Barrie PJ, Chaloner WG (1996b) Studies of fossil and modern spore wall biomacromolecules using 13C solid state NMR. Ann Bot (Oxford) 78:83–94
Hemsley AR, Vincent B, Collinson ME, Griffiths PC (1998) Simulated self-assembly of spore exines. Ann Bot (Oxford) 82:105–109
Hemsley AR, Collinson ME, Vicent B, Griffiths PC, Jenkins PD (2000) Self-assembly of colloidal units in exine development. In: Harley MM, Morton CM, Blackmore S (eds) Pollenand spores: morphology and biology. Whitstable Printers Ltd, Whitstable, pp 31–44
Hemsley AR, Griffiths PC, Mathias R, Moore SEM (2003) A model for the role of surfactants in the assembly of exine sculpture. Grana 42:38–42
Herminghaus S, Gubatz S, Arendt S, Wiermann R (1988) The occurrence of phenols as degradation products of natural sporopollenin—a comparison with “synthetic sporopollenin”. Z Naturf 43c:491–500
Heslop-Harrison J (1972) Pattern in plant cell wall: morphogenesis in miniature. Proc Royal Inst Great Brit 45:335–351
Heslop-Harrison J (1976) The adaptive significance of the exine. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 27–37
Heslop-Harrison J, Dickinson HG (1969) Time relationships of sporopollenin synthesis associated with tapetum and microspores in Lilium. Planta 84:199–214
Hu J, Wang Z, Zhang L, Sun MX (2014) The Arabidopsis Exine formation defect (EFD) gene is required for primexine patterning and is critical for pollen fertility. New Phytol 203:140–154
Ingber DE (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408
Kauffman SA (1993) The origins of order. Univ. Press, Oxford
Kurakin A (2005) Self-organization versus watchmaker: stochastic dynamics of cellular organization. Biol Chem 386:247–254
Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625
Legrand M (2010) Analysis of of tetraketide α-pyrone reductase function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Pl Cell 22:4067–4083
Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5:1121–1123
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-Lipid Metabolism. The Arabidopsis Book 8:e0133. doi:10.1199/tab.0133
Lintilhac PM (2014) The problem of morphogenesis: unscripted biophysical control systems in plants. Protoplasma 251:25–36. doi:10.1007/s00709-013-0522-y
Liu L, Fan X-D (2013) Tapetum: regulation and role in SP biosynthesis in Arabidopsis. Plant Mol Biol 83:165–175
Lou Y, Xu XF, Zhu J, Gu JN, Blackmore S, Yang ZN (2014) The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nature Plants. doi:10.1038/ncomms4855
Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman and co., San Francisco
Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR (2000a) Anthocyanic vacuolar inclusions–their nature and significance in flower colouration. Phytochemistry 55:327–336
Markham KR, Ryan KG, Gould KS, Rickards GK (2000b) Cell wall sited flavonoids in Lisianthus flower petals. Phytochemistry 54:681–687
Moore SEM, Gabarayeva N, Hemsley AR (2009) Morphological, developmental and ultrastructural comparison of Osmunda regalis L. spores with spore mimics. Rev Paleobot Palynol 156:177–184
Mousdale DM, Coggins JR (1985) Subcellular localization of the common shikimate-pathway enzymes in Pisum sativum L. Planta 163:231–249
Muravnik LE, Shavarda AL (2011) Pericarp peltate trichomes in Pterocarya rhoifolia: histochemistry, ultrastructure, and chemical composition. Int J Plant Sci 172(2):159–172
Murphy DJ, Vance J (1999) Mechanisms of lipid-bodies formation. TIBS 24:109–115
Niester-Nyveld C, Haubrich A, Kampendonk H et al. (1997) Immunocytochemical localization of phenolic compounds in pollen walls using antibodies against p-coumaric acid coupled to bovine serum albumin. Protoplasma 197: 148-159
Pettitt JM (1979) Ultrastructure and cytochemistry of spore wall morphogenesis. In: Dyer AF (ed) The experimental biology of ferns. Academic Press, London – New York – San Francisco, pp 211–252
Pettitt JM, Jermy AC (1974) The surface coats on spores. Biol J Linn Soc 6:245–257
Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80
Quilichini TD, Douglas CJ, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot, mcu042. doi:10.1093/aob/mcu042
Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182
Regier JC, Hatzopoulos AK (1988) Evolution in steps: the role of regulatory alterations in the diversification of the moth chorion morphogenetic pathway. In: Varner JE (ed) Self-assembling architecture. Alan R. Liss, New York, pp 179–202
Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Ann Rev Plant Physiol 33:97–132
Rowley JR (1971) Implications on the nature of sporopollenin based upon pollen development. In: Brooks J, Grant PR, Muir M, van Gijzel P, Shaw G (eds) Sporopollenin. Academic Press, London, pp 174–219
Rowley JR (1973) Formation of pollen exine bacules and microchannels on a glycocalyx. Grana 13:129–138
Rowley JR (1975) Lipopolysaccharide embedded within the exine of pollen grains. In: Bailey GW (ed), 33rd Ann Proc Electron Microscopy Soc Amer Las Vegas, Nevada, pp 572–573
Rowley JR (1990) The fundamental structure of the pollen exine. Plant Syst Evol Suppl 5:13–29
Rowley JR, Dahl AO (1977) Pollen development in Artemisia vulgaris with special reference to glycocalyx material. Pollen Spores 19:169–284
Rowley JR, Claugher D (1991) Receptor-independent sporopollenin. Botanica Acta 104:316–323
Rowley JR, Rowley JS (1998) Stain reversal in pollen exines. In: Narendra MD (ed) Current concepts in pollen-spore and biopollination research. Research Periodicals and Book Publishing House, India – USA – UK, pp 223–232
Rowley JR, Prijianto B (1977) Selective destruction of the exine of pollen grains. Geophytology 7:1–23
Rowley JR, Flynn JJ, Takahashi M (1995) Atomic force microscope information on pollen exine substructure in Nuphar. Bot Acta 108:300–308
Rowley JR, Skvarla JJ, Gabarayeva NI (1999) Exine development in Borago (Boraginaceae). 2. Free microspore stages. Taiwania 44:212–229
Rowley JR, Gabarayeva NI, Skvarla JJ, El-Ghazaly G (2001) The effect of 4-methylmorpholine N-oxide monohydrate (MMNO.H2O) on pollen and spore exines. Taiwania 46:246–273
Sampson FB (1977) Pollen tetrads of Hedycarya arborea J. R. Et G. Forst. (Monimiaceae). Grana 16:61–73
Sampson FB (2000) Pollen diversity in some modern magnoliids. Int J Plant Sci 161:193–210
Scott RJ (1994) Pollen exine—the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead MA (eds) Society for Experimental Biology seminar Ser 55: molecular and cellular aspects of plant reproduction. Cambridge Univ Press, Cambridge, pp 49–81
Sheldon JM, Dickinson HG (1983) Determination of patterning in the pollen wall of Lilium henryi. J Cell Sci 63:191–208
Shi J, Cui M, Yang L, Kim Y-J, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Pl Sci 20:741–753
Skvarla JJ, Rowley JR (1987) Ontogeny of pollen in Poinciana (Leguminosae). I. Development of exine template. Rev Palaeobot Palynol 50:239–311
Southworth D (1974) Solubility of pollen exines. Am J Bot 61:36–44
Southworth D (1986) Substructural organization of pollen exines. In: Blackmore S, Ferguson IK (eds) Pollen spores: form and function. Acad. Press, London, pp 61–69
Southworth D, Jernstedt JA (1995) Pollen exine development precedes microtubule rearrangement in Vigna unguiculata (Fabaceae): a model for pollen wall patterning. Protoplasma 187:79–87
Taylor ML, Osborn JM (2006) Pollen ontogeny in Brasenia (Cabombaceae, Nymphaeales). Amer J Bot 93:344–356
Taylor ML, Hudson PJ, Rigg JM, Strandquist JN, Green JS, Thiemann TC, Osborn JM (2013) Pollen ontogeny in Victoria (Nymphaeales). Int J Plant Sci 174:1259–1276
Taylor M, Cooper RL, Schneider EL, Osborn JM (2015) Pollen structure and development in Nymphaeales: insights into character evolution in an ancient angiosperm lineage. Am J Bot 102:1–18. doi:10.3732/ajb.1500249
Thompson DW (1961) On growth and form. Abridged edition. Cambridge university Press, Cambridge
van Bergen PF, Blokker P, Collinson ME, Sinninghe Damsté JS, de Leeuw JW (2004) Structural biomacromolecules in plants: what can be learnt from the fossil record? In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Academic Press, Amsterdam, pp 134–154
van Uffelen GA (1991) The control of spore wall formation. In: Blackmore S, Barnes SH (eds) Pollen and spores: patterns of diversification. Clarendon Press, Oxford, pp 89–102
Vinckier S, Smets E (2005) A histological study of microsporogenesis in Tarenna gracilipes (Rubiaceae). Grana 44:30–44
Waha M (1987) Sporodcrm development of pollen tetrads in Asimina triloba (Annonaceae). Pollen Spores 29:31–44
Wallace S, Fleming A, Wellman CH, Beerling DJ (2011) Evolutionary development of the plant spore and pollen wall. AoB PLANTS 2011:plr027. doi:10.1093/aobpla/plr027
Wellman CH (2004) Origin, function and development of the spore wall in early land plants. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Royal Botanic Gardens, Kew, pp 43–63
Wiermann R, Gubatz S (1992) Pollen wall and sporopollenin. Int Rev Cytol 140:35–72
Wilmesmeier S, Wiermann R (1995) Influence of EPTC (S-ethyl-dipropyl-thiocarbamate) on the composition of surface waxes and sporopollenin structure in Zea mays. J Pl Physiol 146:22–28
Wilmesmeier S, Wiermann R (1997) Immunocytochemical localization of phenolic compounds in pollen walls using antibodies against p-coumaric acid coupled to bovine serum albumin. Protoplasma 197:148–159
Zaprometov MN (1993) Phenolic compounds: distribution, metabolism and functions in plants. Nauka, Moskow
Zavada MS, Gabarayeva NI (1991) Comparative pollen wall development of Welwitschia mirabilis and selected primitive angiosperms. Bull Torrey Bot Club 118:292–302
Zhang D, Li H (2014) Exine export in pollen. In: Geisler M. et al., eds. Plant ABC Transporters. Springer, IPS, pp 49–62
Acknowledgements
This work was partly supported by grant no. 17-04-00517 of Russian Foundation for Basic Research for Nina Gabarayeva (chemicals) and partly provided in the framework of institutional research project of the Komarov Botanical Institute of the Russian Academy of Sciences (using equipment of The Core Facility Center “Cell and Molecular Technologies in Plant Science”). The authors wish to thank Dr. F. Bruce Sampson for some comments and suggested improvements to the English. Our special thanks to our anonymous reviewers.
Author information
Authors and Affiliations
Contributions
Conceptualization: N.G.; Methodology: N.G., V. G.; Investigation: N.G., V.G.; Righting original draft, review and editing: N.G.; Funding acquisition: N.G.; Resources: V.G.; Supervision: N.G.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interests.
Additional information
Handling Editor: Benedikt Kost
Rights and permissions
About this article
Cite this article
Grigorjeva, V.V., Gabarayeva, N. Pollen wall ontogeny in Polemonium caeruleum (Polemoniaceae) and suggested underlying mechanisms of development. Protoplasma 255, 109–128 (2018). https://doi.org/10.1007/s00709-017-1121-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00709-017-1121-0