, Volume 254, Issue 5, pp 2017–2034 | Cite as

Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon

  • Evelyn Jardim Oliveira
  • Andréa Dias Koehler
  • Diego Ismael Rocha
  • Lorena Melo Vieira
  • Marcos Vinícius Marques Pinheiro
  • Elyabe Monteiro de Matos
  • Ana Claudia Ferreira da Cruz
  • Thais Cristina Ribeiro da Silva
  • Francisco André Ossamu Tanaka
  • Fabio Tebaldi Silveira NogueiraEmail author
  • Wagner Campos OtoniEmail author
Original Article


The wild grass species Brachypodium distachyon (L.) has been proposed as a new model for temperate grasses. Among the biotechnological tools already developed for the species, an efficient induction protocol of somatic embryogenesis (SE) using immature zygotic embryos has provided the basis for genetic transformation studies. However, a systematic work to better understanding the basic cellular and molecular mechanisms that underlie the SE process of this grass species is still missing. Here, we present new insights at the morpho-histological, histochemical, and molecular aspects of B. distachyon SE pathway. Somatic embryos arose from embryogenic callus formed by cells derived from the protodermal-dividing cells of the scutellum. These protodermal cells showed typical meristematic features and high protein accumulation which were interpreted as the first observable steps towards the acquisition of a competent state. Starch content decreased along embryogenic callus differentiation supporting the idea that carbohydrate reserves are essential to morphogenetic processes. Interestingly, starch accumulation was also observed at late stages of SE process. Searches in databanks revealed three sequences available annotated as BdSERK, being two copies corresponding to SERK1 and one showing greater identity to SERK2. In silico analysis confirmed the presence of characteristic domains in a B. distachyon Somatic Embryogenesis Receptor Kinase genes candidates (BdSERKs), which suggests SERK functions are conserved in B. distachyon. In situ hybridization demonstrated the presence of transcripts of BdSERK1 in all development since globular until scutellar stages. The results reported in this study convey important information about the morphogenetic events in the embryogenic pathway which has been lacking in B. distachyon. This study also demonstrates that B. distachyon provides a useful model system for investigating the genetic regulation of SE in grass species.


Cellular competency Grass Histology In situ hybridization SERK genes Somatic embryogenesis 



This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brasília, DF, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brasília, DF, Brazil), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (Belo Horizonte, MG, Brazil). Caio G. Otoni is also acknowledged for the English revision.

Authors’ contributions

FTSN and WCO designed the research; EJO established the embryogenic cultures; ACFC, EJO, and LMV performed the light microscopy analysis; DIR and FAOT performed the scanning and transmission electron microscopy analyses; ADK, LMV, MVMP, EMM, and TCRS performed the characterization of sequences and in situ hybridization analysis; and ADK, DIR, EMM, EJO, FTSN, and WCO wrote the paper.

Supplementary material

709_2017_1089_Fig9_ESM.gif (119 kb)
Figure S1 Discrimination of signal peptide from deduced amino acid sequences of BdSERK using SignalP v. 4.1. Server. (GIF 119 kb)
709_2017_1089_MOESM1_ESM.tif (413 kb)
High resolution image (TIFF 413 kb)
709_2017_1089_Fig10_ESM.png (41 kb)
Figure S2 Phylogenetic relationship of SERK proteins. The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The optimal tree with the sum of branch length = 7.11556016 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein 1985). The evolutionary distances were computed using the Dayhoff matrix based method and are in the units of the number of amino acid substitutions per site (Schwarz and Dayhoff 1979). The analysis involved 65 amino acid sequences of SERK proteins and 4 LRRII-RLK non-SERKs, available at Genbank. All positions containing gaps and missing data were eliminated. There were a total of 287 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al. 2016). (PNG 40 kb)


  1. aan den Toorn M, Albrecht C, de Vries S (2015) On the origin of SERKs: bioinformatics analysis of the somatic embryogenesis receptor kinases. Mol Plant 8:762–782CrossRefGoogle Scholar
  2. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) Consurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:529--533Google Scholar
  3. Baudino S, Hansen S, Brettschneider R, Hecht VEG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10CrossRefPubMedGoogle Scholar
  4. Betekhtin A, Rojek M, Milewska-Hendel A, Gawecki R, Karcz J, Kurczyńska E, Hasterok R (2016) Spatial distribution of selected chemical cell wall components in the embryogenic callus of Brachypodium distachyon. PLoS One 11(11):e0167426CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum, LondonCrossRefGoogle Scholar
  6. Brisibe EA, Nishioka D, Miyake H, Taniguchi T, Maeda E (1993) Developmental electron microscopy and histochemistry of somatic embryo differentiation in sugarcane. Plant Sci 89:85–92CrossRefGoogle Scholar
  7. Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, Caicedo AL, Gao C, Gu Y, Hazen SP, Holt BF III, Hong SY, Jordan M, Manzaneda AJ, Mitchell-Olds T, Mochida K, Mur LAJ, Park CM, Sedbrook J, Watt M, Zheng SJ, Vogel JP (2011) Brachypodium as a model for the grasses: today and the future. Plant Physiol 157:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cabral GB, Carneiro VTC, Rossi ML, Silva JP, Martinelli AP, Dusi DMA (2015) Plant regeneration from embryogenic callus and cell suspensions of Brachiaria brizantha. In Vitro Cell Dev Biol—Plant 51:369–377CrossRefGoogle Scholar
  9. Cangahuala-Inocente GC, Steiner N, Santos M, Guerra MP (2004) Morphological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma 224:33–40PubMedGoogle Scholar
  10. Cangahuala-Inocente GC, Steiner N, Maldonado SB, Guerra MP (2009) Patterns of protein and carbohydrate accumulation during somatic embryogenesis of Acca sellowiana. Pesq Agropec Bras 44:217–224CrossRefGoogle Scholar
  11. Canhoto JM, Cruz GS (1996) Histodifferentiation of somatic embryos in cotyledons of pineapple guava (Feijoa sellowiana Berg.). Protoplasma 19:34–45CrossRefGoogle Scholar
  12. Chandler JW (2008) Cotyledon organogenesis. J Exp Bot 59:2917–2931CrossRefPubMedGoogle Scholar
  13. De Fillipis LF (2014) Crop improvement through tissue culture. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds) Improvement of crops in the era of climate changes, 1st edn. Springer, New York, pp 289–346CrossRefGoogle Scholar
  14. Delporte F, Pretova A, du Jardin P, Watillon B (2014) Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 251:1455–1470CrossRefPubMedPubMedCentralGoogle Scholar
  15. Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555CrossRefPubMedPubMedCentralGoogle Scholar
  16. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142CrossRefGoogle Scholar
  17. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Organ Cult 74:201–228CrossRefGoogle Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  19. Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, McIntyre CL, Manners JM, Ayliffe M, Watt M, Vogel JP, Henry RJ, Kazan K (2015) Brachypodium as an emerging model for cereal-pathogen interactions. Ann Bot 115:717–731CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fortes AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87:971–979CrossRefPubMedGoogle Scholar
  21. Ge XX, Fan GE, Chai LJ, Guo WW (2010) Cloning, molecular characterization and expression analysis of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene (CitSERK1-like) in Valencia sweet orange. Acta Physiol Plant 32:1197–1207CrossRefGoogle Scholar
  22. Girin T, David LC, Chardin C, Sibout R, Krapp A, Ferrario-Méry S, Daniel-Vedele F (2014) Brachypodium: a promising hub between model species and cereals. J Exp Bot 65(19):5683–5696. doi: 10.1093/jxb/eru376 CrossRefPubMedGoogle Scholar
  23. Gruszczyńska A, Rakoczy-Trojanowska M (2011) Expression analysis of somatic embryogenesis-related SERK, LEC1, VP1 and NiR ortologues in rye (Secale cereale L.). J Appl Genet 52:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  24. Guillon F, Bouchet B, Jamme F, Robert P, Quemener B, Barron C, Larre C, Dumas P, Saulnier L (2011) Brachypodium distachyon grain: characterization of endosperm cell walls. J Exp Bot 62:1001–1015CrossRefPubMedGoogle Scholar
  25. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117CrossRefPubMedGoogle Scholar
  27. Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190CrossRefPubMedPubMedCentralGoogle Scholar
  28. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  29. Kellogg EA (2015) Brachypodium distachyon as a genetic model system. Annu Rev Genet 49:1–20CrossRefPubMedGoogle Scholar
  30. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  31. Kurczyńska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:619–628CrossRefPubMedGoogle Scholar
  32. Kurczyńska EU, Potocka I, Dobrowolska I, Kulinskalukaszek K, Sala K, Wrobel J (2012) Cellular markers for somatic embryogenesis. In: Sato KI (ed) Embryogenesis. InTech, Rijeka, pp 307–332Google Scholar
  33. Kwaaitaal MACJ, De Vries SC (2007) The SERK1 gene is expressed in procambium and immature vascular cells. J Exp Bot 58:2887–2896CrossRefPubMedGoogle Scholar
  34. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) Consurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:299--302Google Scholar
  35. Lenis-Manzano SJ, Araujo ACG, Valle CB, Santana EF, Carneiro VTC (2010) Histologia da embriogênese somática induzida em embriões de sementes maduras de Urochloa brizantha apomítica. Pesq Agropec Bras 45:435–441CrossRefGoogle Scholar
  36. Li X, Fang YH, Han JD, Bai SN, Rao GY (2015) Isolation and characterization of a novel SOMATIC EMBRYOGENESIS RECEPTOR KINASE gene expressed in the fern Adiantum capillus-veneris during shoot regeneration in vitro. Plant Mol Biol Rep 33:638–647CrossRefGoogle Scholar
  37. Liu B, Su S, Wu Y, Li Y, Shan X, Li S, Liu H, Dong H, Ding M, Han J, Yuan Y (2015) Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423. Plant Physiol Biochem 92:81–91CrossRefPubMedGoogle Scholar
  38. Mariani TS, Miyake H, Takeoka Y (1998) Changes in surface structure during direct somatic embryogenesis in rice scutellum observed by scanning electron microscopy. Plant Prod Sci 1:223–231CrossRefGoogle Scholar
  39. Martin AB, Cuadrado Y, Guerra H, Gallego P, Hita O, Martin L, Dorado A, Villalobos N (2000) Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci 29:143–151CrossRefGoogle Scholar
  40. Moura EF, Ventrella MC, Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Sci Agric 67:399–407CrossRefGoogle Scholar
  41. Moura EF, Ventrella MC, Motoike SY, Sá Júnior AQ, Carvalho M, Manfio CE (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell Tiss Organ Cult 95:175-184Google Scholar
  42. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  43. Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Organ Cult 90:1–8CrossRefGoogle Scholar
  44. Nolan KE, Irwanto RR, Rose RJ (2003) Auxin upregulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60:1759–1771CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nolan KE, Kurdyukov S, Rose RJ (2011) Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implication for development and defence. BMC Plant Biol 11:44Google Scholar
  47. Nonohay JS, Mariath JEA, Winge H (1999) Histological analysis of somatic embryogenesis in Brazilian cultivars of barley, Hordeum vulgare vulgare, Poaceae. Plant Cell Rep 18:929–934CrossRefGoogle Scholar
  48. O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty, MelbourneGoogle Scholar
  49. Opanowicz M, Vain P, Draper J, Parker D, Doonan JHS (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177CrossRefPubMedGoogle Scholar
  50. Opanowicz M, Hands P, Betts D, Parker ML, Toole GA, Mills EN, Doonan JH, Drea S (2011) Endosperm development in Brachypodium distachyon. J Exp Bot 62:735–748CrossRefPubMedGoogle Scholar
  51. Ozias-Akins P, Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110:95–105CrossRefGoogle Scholar
  52. Pan X, Yang X, Lin G, Zou R, Chen H, Samaj J, Xu C (2011) Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. ‘Yueyoukang 1’). Physiol Plant 142:372–389CrossRefPubMedGoogle Scholar
  53. Pearse AGE (1980) Histochemistry theoretical and applied. Churchill Livingston, EdinburghGoogle Scholar
  54. Pérez-Nuñéz MT, Souza R, Sáenz L, Chan JL, Zúñiga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19CrossRefPubMedGoogle Scholar
  55. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) Signal P 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  56. Pilarska M, Malec P, Salaj J, Bartnicki F, Konieczny R (2016) High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of varius developmental pathways in vitro culture of Trifolium nigrescens. Protoplasma 253:345–355CrossRefPubMedGoogle Scholar
  57. Pinto G, Silva S, Araújo C, Neves L, Santos C (2010) Histocytological changes and reserves accumulation during somatic embryogenesis in Eucalyptus globulus. Trees 24:763–769CrossRefGoogle Scholar
  58. Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149CrossRefGoogle Scholar
  59. Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301CrossRefGoogle Scholar
  60. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rocha DI, Dornelas MC (2013) Molecular overview on plant somatic embryogenesis. CAB Rev 8:1–17CrossRefGoogle Scholar
  62. Rocha DI, Vieira LM, Tanaka FAO, Silva LC, Otoni WC (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249:747–758CrossRefPubMedGoogle Scholar
  63. Rocha DI, Pinto DLP, Vieira LM, Tanaka FAO, Dornelas MC, Otoni WC (2016) Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. Protoplasma 253:595–609CrossRefPubMedGoogle Scholar
  64. Saitou N, Nei M (1987) The neighbour joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406--425Google Scholar
  65. Santa-Catarina C, Hanai LR, Dornelas MC, Viana AM, Floh EIS (2004) SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tiss Organ Cult 79:53–61CrossRefGoogle Scholar
  66. Santiago J, Henzler C, Hothorn M (2013) Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 341:889-892Google Scholar
  67. Savona M, Mattioli R, Nigro S, Falasca G, Della Rovere F, Costantino P, De Vries S, Ruffoni B, Trovato M, Altamura MM (2012) Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. J Exp Bot 63:471–488CrossRefPubMedGoogle Scholar
  68. Schmidt ED, Guzzo F, Toonen MA, Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  69. Schwarz R, Dayhoff M (1979) Matrices for detecting distant relationships. In Dayhoff M (ed) Atlas of protein sequences, National Biomedical Research Foundation. pp 353--358Google Scholar
  70. Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterization of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330CrossRefPubMedGoogle Scholar
  71. Silva GM, Cruz ACF, Otoni WC, Pereira TNS, Rocha DI, Silva ML (2015) Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae). In Vitro Cell Dev Biol-Plant 51:539–545CrossRefGoogle Scholar
  72. Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 27:833–843CrossRefPubMedGoogle Scholar
  73. Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. J Exp Bot 65:1343–1460CrossRefPubMedGoogle Scholar
  74. Somleva MN, Schmidt EDL, De Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726CrossRefGoogle Scholar
  75. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43CrossRefPubMedGoogle Scholar
  76. Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tiss Organ Cult 109:41–50Google Scholar
  77. Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryogenic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460CrossRefPubMedPubMedCentralGoogle Scholar
  78. Taylor MG, Vasil IK (1996) The ultrastructure of somatic embryo development in pearl millet (Pennisetum glaucum; Poaceae). Am J Bot 83:28–44CrossRefGoogle Scholar
  79. Tomlinson K, Denyer K, Callow JA (2003) Starch synthesis in cereal grains. In: Callow JA (ed) Advances in botanical research. Academic, London, pp 1–61Google Scholar
  80. Vain P (2011) Brachypodium as a model system for grass research. J Cereal Sci 54:1–7CrossRefGoogle Scholar
  81. Vasil V, Lu C, Vasil IK (1985) Histology of somatic embryogenesis in cultured immature embryos of maize (Zea mays L.). Protoplasma 127:1–8CrossRefGoogle Scholar
  82. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriere N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18CrossRefGoogle Scholar
  83. Verdeil JL, Alemanno L, Niemenak N, Trambarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252Google Scholar
  84. Vernoud V, Hajduch M, Khaled A-S, Depège N, Rogowski P (2005) Maize embryogenesis. Maydica 50:469–483Google Scholar
  85. Vidal BC (1977) Acid glycosaminoglycans and endochondral ossification microespectrophotometric evaluation and macromolecular orientation. Cell Mol Biol 22:45–64Google Scholar
  86. Vogel JP (2016) Plant genetics and genomics: crops and models, v. 18, Genetics and genomics of Brachypodium. Springer International Publishing, HeidelbergGoogle Scholar
  87. Vogel J, Bragg J (2009) Brachypodium distachyon, a new model for the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, vol 7, 1st edn. Springer-Verlag, New York, pp 427–449CrossRefGoogle Scholar
  88. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Organ Cult 69:233–249CrossRefGoogle Scholar
  89. Wrobel J, Barlow PW, Gorka K, Nabialkowska D, Kurczyńska EU (2011) Histology and symplasmic tracer distribution during development of barley androgenic embryos. Planta 233:873–881CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57CrossRefGoogle Scholar
  91. Ye XG, Tao LL (2008) Research outline on some characteristics of Brachypodium distachyon as a new model plant species. Acta Agron Sin 34:919–925CrossRefGoogle Scholar
  92. Zhang S, Liu X, Lin Y, Xie G, Fu F, Liu H, Wang J, Gao S, Lan H, Rong T (2011) Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tiss Organ Cult 105:29–37CrossRefGoogle Scholar
  93. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Evelyn Jardim Oliveira
    • 1
  • Andréa Dias Koehler
    • 1
  • Diego Ismael Rocha
    • 2
  • Lorena Melo Vieira
    • 1
  • Marcos Vinícius Marques Pinheiro
    • 1
  • Elyabe Monteiro de Matos
    • 1
  • Ana Claudia Ferreira da Cruz
    • 1
  • Thais Cristina Ribeiro da Silva
    • 1
  • Francisco André Ossamu Tanaka
    • 3
  • Fabio Tebaldi Silveira Nogueira
    • 4
    Email author
  • Wagner Campos Otoni
    • 1
    Email author
  1. 1.Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Instituto de BiociênciasUniversidade Federal de Goiás, Regional JataíJataíBrazil
  3. 3.Departamento de Fitopatologia e NematologiaUniversidade de São Paulo/ESALQPiracicabaBrazil
  4. 4.Laboratorio de Genética Molecular do Desenvolvimento Vegetal (LGMDV)Universidade de São Paulo/ESALQPiracicabaBrazil

Personalised recommendations