Skip to main content
Log in

Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In numerous experimental studies, seedlings of the model dicot Arabidopsis thaliana have been raised on sterile mineral salt agar. However, under natural conditions, no plant has ever grown in an environment without bacteria. Here, we document that germ-free (gnotobiotic) seedlings, raised on mineral salt agar without sucrose, develop very short root hairs. In the presence of a soil extract that contains naturally occurring microbes, root hair elongation is promoted; this effect can be mimicked by the addition of methylobacteria to germ-free seedlings. Using five different bacterial species (Methylobacterium mesophilicum, Methylobacterium extorquens, Methylobacterium oryzae, Methylobacterium podarium, and Methylobacterium radiotolerans), we show that, over 9 days of seedling development in a light-dark cycle, root development (hair elongation, length of the primary root, branching patterns) is regulated by these epiphytic microbes that occur in the rhizosphere of field-grown plants. In a sterile liquid culture test system, auxin (IAA) inhibited root growth with little effect on hair elongation and significantly stimulated hypocotyl enlargement. Cytokinins (trans-zeatin, kinetin) and ethylene (application of the precursor ACC) likewise exerted an inhibitory effect on root growth but, in contrast to IAA, drastically stimulated root hair elongation. Methylobacteria are phytosymbionts that produce/secrete cytokinins. We conclude that, under real-world conditions (soil), the provision of these phytohormones by methylobacteria (and other epiphytic microbes) regulates root development during seedling establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwaab W (2006) Molecular interaction between Methylobacteria extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Lanhans M (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow PM (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  • Bresson J, Vasseur F, Dauzat M, Labadie M, Varoquaux F, Touraine B, Vile D (2014) Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery. PLoS One 9:e107607

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and function of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Chaiwanon J, Wang Z-Y (2015) Spatiotemporal brassinosteroid signalling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta S, Kim CM, Pernas M, Pires ND, Proust H, Tam T, Vijayakumar P, Dolan L (2011) Root hairs: development, growth and the evolution at the plant-soil interface. Plant Soil 364:1–14

    Article  Google Scholar 

  • Deng Z, Oses-Prieto JA, Kutschera U, Tseng T-S, Hao L, Burlingame AL, Wang Z, Briggs WR (2014) Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 13:2524–2533

  • Doerges L, Kutschera U (2014) Assembly and loss of the polar flagellum in plant-associated methylobacteria. Naturwissenschaften 101:339–346

    Article  CAS  PubMed  Google Scholar 

  • Galland M, Gamet L, Varoquaux F, Touraine B, Touraine B, Desbrosses G (2012) The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci 190:74–81

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fraile P, Menendex E, Rivas P (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering 2:183–205

    Article  CAS  Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2002) Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on protonema development. Plant Biol 4:682–687

    Article  Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2006) Moss-associated methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften 93:480–486

    Article  CAS  PubMed  Google Scholar 

  • Jucknischke A, Kutschera U (1998) The role of the cotyledons and primary leaves during seedling etablishment in sunflower. J Plant Physiol 153:700–705

    Article  CAS  Google Scholar 

  • Jung JKH, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4/186:1–32

    Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kircher T, Schopfer P (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 109:11217–11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopmann V, Kutschera U (2005) In-vitro regeneration of sunflower plants: effects of a Methylobacterium strain on organ development. J Appl Bot 79:59–62

    Google Scholar 

  • Kutschera U (2002) Bacterial colonization of sunflower cotyledons during seed germination. J Appl Bot 76:96–98

    Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutschera U (2011) From the scala naturae to the symbiogenetic and dynamic tree of life. Biol Direct 6/33:1–20

    Google Scholar 

  • Kutschera U (2015a) Comment: 150 years of an integrative plant physiology. Nature Plants 1/15131:1–3

    Google Scholar 

  • Kutschera U (2015b) Basic versus applied research: Julius Sachs (1832–1897) and the experimental physiology of plants. Plant Signal Behav 10/9 e1062958:1–9

    Google Scholar 

  • Kutschera U, Khanna R (2016) Plant gnotogiology: epiphytic microbes and sustainable agriclture. Plant Signal Behav 11/e1256529:1–4

  • Kutschera U, Koopmann V (2005) Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria. Naturwissenschaften 92:347–349

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2016) The evolution of the plant genome-to-morphology auxin circuit. Theory Biosci 135:175–186

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Wang Z-Y (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschera U, Wang Z-Y (2016) Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma 253:3–14

    Article  CAS  PubMed  Google Scholar 

  • Lidstrom ME, Chistoserdova L (2002) Plants in the pink: cytokinin production by methylobacterium. J Bacteriol 184:1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 53:541–556

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2. edn. Academic Press, London

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

  • Niklas KJ, Kutschera U (2017) From Goethe’s plant archetype via Haeckel’s biogenetic law to plant evo-devo 2016. Theory Biosci. doi:10.1007/s12064-016-0237-7

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2(6):a001537

    Article  PubMed  PubMed Central  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root-hair elongation in Arabidopsis. Plant J 16:553–560

    Article  CAS  PubMed  Google Scholar 

  • Redei GP (1962) Supervital mutants of Arabidopsis. Genetics 47:443–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interaction between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–766

    Article  Google Scholar 

  • Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29

    Article  CAS  PubMed  Google Scholar 

  • Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav 6:510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer S, Kämpfer P, Wellner S, Spröer C, Kutschera U (2011) Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Internat J Syst Evol Microbiol 61:870–876

  • Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W (2015) Genetic control of root growth: from genes to networks. Ann Bot 117:9–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M (2014) Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. J Exp Bot 65:1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Desbrosses G (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4/356:166–176

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. The MacMillan Company, New York

    Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CM (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alexander von Humboldt Foundation (Bonn, Germany) (AvH Stanford 2013/2014 to UK). We thank Dr. Z.Y. Wang for the provision of plant material and consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kutschera.

Additional information

Handling Editor: Peter Nick

Dedicated to the memory of Peter Sitte (1929–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klikno, J., Kutschera, U. Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria. Protoplasma 254, 1867–1877 (2017). https://doi.org/10.1007/s00709-016-1067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1067-7

Keywords

Navigation