Abstract
Here, we describe the development of chloroplasts and the buildup of the thylakoid membranes in growing Arabidopsis leaves. Organelles were analyzed from three distinct positions, namely, at the tip, the upper leaf margin, and the base from leaves 1, 3, 5, and 7 of 14-day-old plants. Clear developmental gradients are described within a given leaf and between leaves of different age. Chloroplasts at the tip of every leaf are always the most matured within a given leaf, while already at the upper leaf margin a differentiation gradient can be observed from the edge of the leaf toward the midrib. The data presented here can serve as a standard for a subcellular phenotypic analysis in chloroplast biogenesis mutants.
This is a preview of subscription content, access via your institution.













References
Avramova V, Sprangers K, Beemster GTS (2015) The maize leaf: another perspective on growth regulation. Trends Plant Sci 20:787–797
Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018
Charuvi D, Kiss V, Nevo R, Shimoni E, Adam Z, Reich Z (2012) Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell 24:1143–1157
Diers L, Schötz F (1966) Über die dreidimensionale Gestaltung des Thylakoidsystems in den Chloroplasten. Planta 70:322–343
Embley TM, Martin W (2006) Eukaryotic evolution: changes and challenges. Nature 440:623–630
Fasse-Franzisket U (1955) Die Teilung der Proplastiden und Chloroplasten bei Agapanthus umbellatus L’Hérit. Protoplasma 45:194–227
Freeling M (1992) A conceptual frameword for maize leaf development. Dev Biol 153:44–58
Gonzalez N, Vanhaeren H, Inzé D (2012) Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 17:332–340
Gunning BES (1965) The greening process in plastids. Protoplasma 60:111–130
Kirk JTO, Tilney-Bassett RAE (1978) The plastids: their chemistry, structure, growth and inheritance. Elsevier, Amsterdam. ISBN 0–444–8022-0
Klein S, Bryan G, Bogorad L (1964) Early stages in the development of plastid fine structure in red and far-red light. J Cell Biol 22:433–442
Kowalewska L, Mazur R, Suski S, Garstka M, Mostowska A (2016) Three- dimensional visualisation of the tubular-lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis. Plant Cell 28(4):875–891
Li N, Gügel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K (2015) FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol 13(2):e1002053. doi:10.1371/journal.pbio.1002053
Menke W (1940) Die Lamellarstruktur der Chloroplasten im ultravioletten Licht. Die Naturwissenschaften 28:158–159
Meyer A (1883) Das Chlorophyllkorn in chemischer, morphologischer und biologischer Beziehung. Arthur Felix, Leipzig
Mullet JE (1988) Chloroplast development and gene expression. Ann Rev Plant Phys Plant Mol Biol 39:475–502
Mustárdy L, Buttle K, Steinbach G, Garab G (2008) Three-dimensional architecture of the granum-stroma thylakoid membrane system revealed by electron tomography. In Photosynthesis. Energy from the sun: 14th International Congress on Photosynthesis, Allen JF, Gantt E, Goldbeck JH, B and Osmond, eds (Heidelberg, Germany, Springer), pp. 767–770
Possingham JV (1980) Plastid replication and development in the life cycle of higher plants. Ann Rev Plant Physiol 31:113–129
Possingham JV, Saurer W (1969) Changes in chloroplast number per cell during leaf development in spinach. Planta 86:186–194
Pyke KA (1999) Plastid division and development. Plant Cell 11:549–556
Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93
Schimper A (1885) Untersuchungen über die Chlorophyllkörper und die ihnen homologen Gebilde. Jahrb wiss Bot 16:1–27
Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586
Strugger S (1951) Die Strukturordnung im Chloroplasten. Ber Deut Bot Ges 54:69–83
Tsiantis M, Langdale JA (1998) The formation of leaves. Curr Opin Plant Biol 1:43–48
Van Dingenen J, Blomme J, Gonzalez N, Inzé D (2016) Plants grow with a little help from their organelle friends. J Exp Bot 67:6267–6281
Vanhaeren H, Gonzales N, Inzé D (2015) A journey through a leaf: Phenomics analysis of leaf growth in Arabidopsis thaliana. The Arabidopsis Book 13:e0181. doi:10.1199/tab.0181
von Wettstein D (1957) Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp Cell Res 12:427–506
Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14. doi:10.1186/s13007-015-0056-8
Wehrmeyer W, Röbbelen G (1965) Räumliche Aspekte zur Membranschichtung in den Chloroplasten einer Arabidopsis-Mutante unter Auswertung von Serienschnitten. Planta 64:312–329
Whatley JM (1993) The endosymbiotic origin of chloroplasts. Int Rev Cytol 144:259–299
Acknowledgements
This paper is dedicated to the late Prof. P. Sitte University of Freiburg. We gratefully acknowledge the invaluable ongoing discussion and scientific support by Prof. G. Schultz. This work was in parts financed by the Deutsche Forschungsgemeinschaft Cluster of Excellence CIPSM.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling editor: Peter Nick
Rights and permissions
About this article
Cite this article
Gügel, I.L., Soll, J. Chloroplast differentiation in the growing leaves of Arabidopsis thaliana . Protoplasma 254, 1857–1866 (2017). https://doi.org/10.1007/s00709-016-1057-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00709-016-1057-9
Keywords
- Transmission electron microscopy
- Thylakoids
- Leaf development
- Chloroplast differentiation
- Arabidopsis thaliana