Skip to main content

Advertisement

Log in

Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Downy mildew is a highly destructive disease in grapevine production. A gene encoding pathogenesis-related (PR) thaumatin-like protein was isolated from the downy mildew-resistant grapevine “Zuoshan-1,” a clonal selection from wild Vitis amurensis Rupr. The predicted thaumatin-like protein (VaTLP) has 225 amino acids and it is acidic, with a calculated isoelectric point of 4.8. The full length of the VaTLP gene was transformed into somatic embryogenic calli of V. vinifera ‘Thompson Seedless’ via Agrobacterium tumefaciens. Real-time RT-PCR confirmed that the VaTLP gene was expressed at a high level in the transgenic grapevines. Improved resistance of the transgenic lines against downy mildew was evaluated using leaf disks and whole plants inoculated with Plasmopara viticola, the pathogen causing grapevine downy mildew disease. Bioassay of the pathogen showed that both hyphae growth and asexual reproduction were inhibited significantly among the transgenic plants. Histological analysis also confirmed this disease resistance by demonstrating the inhibition and malformation of hyphae development in leaf tissue of the transgenic plants. These results indicated that the accumulation of VaTLP could enhance resistance to P. viticola in transgenic ‘Thompson Seedless’ grapevines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abad LR, D’Urzo MP, Liu D et al (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118:11–23

    Article  CAS  Google Scholar 

  • Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cv. Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8

    Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M et al (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Nati Acad Sci USA 90:7327–7331

    Article  CAS  Google Scholar 

  • Barre A, Peumans WJ, Menu-Bouaouiche L et al (2000) Purification and structural analysis of an abundant thaumatin-like protein from ripe banana fruit. Planta 211:791–799

    Article  CAS  PubMed  Google Scholar 

  • Boso Alonso S, Blanco S, Luis J et al (2005) A method to evaluate downy mildew resistance in grapevine. Agron Sustain Dev 25:163–165

    Article  Google Scholar 

  • Cervera M, Pina JA, Juárez J et al (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    Article  CAS  Google Scholar 

  • Chan MT, Chen LJ, Chang HH (1996) Expression of Bacillus thuringiensis (B.t.) insecticidal crystal protein gene in transgenic potato. Bot Bull Acad Sin 37:17–23

    CAS  Google Scholar 

  • Cheong NE, Choi YO, Kim WY et al (1997) Purification of an antifungal PR-5 protein from flower buds of Brassica campestris and cloning of its gene. Physiol Plantarum 101:583–590

    Article  CAS  Google Scholar 

  • Christensen AB, Cho BH, Naesby M et al (2002) The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol Plant Pathol 3:135–144

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In vitro Cell Dev 47:458–466

    Article  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V et al (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breeding 7:175–185

    Article  CAS  Google Scholar 

  • Fan C, Pu N, Wang X et al (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tiss Organ Cult 92:197–206

    Article  CAS  Google Scholar 

  • Fils-Lycaon BR, Wiersma PA, Eastwell KC et al (1996) A cherry protein and its gene, abundantly expressed in ripening fruit have been identified as thaumatin-like. Plant Physiol 111:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier J, Potvin C, Trudel J et al (1999) Some thaumatin-like proteins hydrolyse polymeric β-1,3-glucans. Plant J 19:473–480

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS et al (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hood ME, Shew HD (1996) Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86:704–708

    Article  Google Scholar 

  • Jayasankar S, Li Z, Gray DJ (2003) Constitutive expression of Vitis vinifera thaumatin-like protein after in vitro selection and its role in anthracnose resistance. Funct Plant Biol 30:1105–1115

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Pl Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R et al (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jürges G, Kassemeyer HH, Dürrenberger M et al (2009) The mode of interaction between Vitis and Plasmopara viticola Berk. & Curt. Ex de Bary depends on the host species. Plant Biol 11:886–898

    Article  PubMed  Google Scholar 

  • Kiefer B, Riemann M, Büche C et al (2002) The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta 215:387–393

    Article  CAS  PubMed  Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Gasic K, Cammue B et al (2003) Transgenic rose lines harboring an antimicrobial protein gene, ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wu J, Yin L et al (2015) Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. Plant Physiol Bioch 95:1–14

    Article  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM et al (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Nati Acad Sci USA 91:1888–1892

    Article  CAS  Google Scholar 

  • Liu JJ, Sturrock R, Ekramoddoullah AKM (2010) The super family of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    Article  CAS  PubMed  Google Scholar 

  • Liu SM, Sykes SR, Clingeleffer PR (2003) A method using leafed single-node cuttings to evaluate downy mildew resistance in grapevine. Vitis 42:173–180

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh CA, Lewis J, Radmer LE et al (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

    Article  CAS  PubMed  Google Scholar 

  • Maghuly F, Leopold S, da Camara MA et al (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553

    Article  CAS  PubMed  Google Scholar 

  • McCown BH, Lloyd G (1981) Woody plant medium (WPM)—a mineral nutrient formulation for microculture of woody plant species. Hortscience 16:453

    Google Scholar 

  • Monteiro S, Barakat M, Piçarra-Pereira MA et al (2003) Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology 93:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale AD, Wahleithner JA, Lund M et al (1990) Chitinase, β-1,3-glucanase, osmotin and extensin are expressed in tobacco explants during flower formation. Plant Cell 2:673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pocock KF, Hayasaka Y, McCarthy MG et al (2000) Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J Agric Food Chem 48:1637–1643

    Article  CAS  PubMed  Google Scholar 

  • Popowich EA, Firsov AP, Mitiouchkina TY et al (2007) Agrobacterium-mediated transformation of Hyacinthus orientalis with thaumatin II gene to control fungal diseases. Plant Cell Tissue Organ Cult 90:237–244

    Article  CAS  Google Scholar 

  • Rajam MV, Chandola N, Goud PS et al (2007) Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants. Biol Plant 51:135–141

    Article  CAS  Google Scholar 

  • Regalado AP, Ricardo CPP (1996) Study of intercellular fluid in healthy Lupinus albus organs. Plant Physiol 110:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    Article  CAS  Google Scholar 

  • Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Horticult 106:177–189

    Article  CAS  Google Scholar 

  • Sassa H, Ushijima K, Hirano H (2002) A pistil-specific thaumatin/PR5-like protein gene of Japanese pear (Pyrus serotina): sequence and promoter activity of the 5′ region in transgenic tobacco. Plant Mol Biol 50:371–377

    Article  CAS  PubMed  Google Scholar 

  • Skadsen RW, Sathish P, Kaeppler HF (2000) Expression of thaumatin-like permatin PR-5 genes switches from the ovary wall to the aleurone in developing barley and oat seeds. Plant Sci 156:11–22

    Article  CAS  PubMed  Google Scholar 

  • Stark-Urnau M, Seidel M, Kast WK et al (2000) Studies on the genetic diversity of primary and secondary infections of Plasmopara viticola using RAPD/PCR. Vitis 39:163–166

    CAS  Google Scholar 

  • Staudt G, Kassemeyer HH (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis 34:225–228

    Google Scholar 

  • Tattersall DB, Van Heeswijck R, Hoj PB (1997) Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol 114:759–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trudel J, Grenier J, Potvin C et al (1998) Several thaumatin like proteins bind to beta-1,3-glucans. Plant Physiol 118:1431–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Damme EJ, Charels D, Menu-Bouaouiche L et al (2002) Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree (Sambucus nigra L.). Planta 214:853–862

    Article  CAS  PubMed  Google Scholar 

  • Van der Wel H, Loewe K (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumato-coccusdaniellii Benth. Eur J Biochem 31:221–225

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  CAS  PubMed  Google Scholar 

  • Velazhahan R, Datta SK, Muthukrishnan S (1999) The PR-5 family:thaumatin-like proteins in plants. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp. 107–129

    Google Scholar 

  • Velazhahan R, Muthukrishnan S (2003) Transgenic tobacco plants constitutively overexpressing a rice thaumatin-like protein (PR-5) show enhanced resistance to Alternaria alternata. Biol Plant 47:347–354

    Article  CAS  Google Scholar 

  • Vu L, Huynh QK (1994) Isolation and characterization of a 27 kDa antifungal protein from the fruits of Diospyros texana. Biochem and Bioph Res Co 202:666–672

    Article  CAS  Google Scholar 

  • Wagih EE, Coutts RHA (1981) Similarities in the soluble protein profiles of leaf tissue following either a hypersensitive reaction to virus infection or plasmolysis. Plant Sci Lett 21:61–69

    Article  CAS  Google Scholar 

  • Wu J, Zhang Y, Zhang H et al (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Ye W, Zhu Z et al (2005) A simple non-destructive method to measure leaf area using digital camera and Photoshop software. Chin J Eco 6:711–714

    Google Scholar 

  • Yu Y, Zhang Y, Yin L et al (2012) The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology 102:1094–1101

    Article  PubMed  Google Scholar 

  • Zanek MC, Reyes CA, Cervera M et al (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66

    Article  CAS  PubMed  Google Scholar 

  • Zevenhuizen LPTM, Bartnicki-Garcia S (1968) Structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi. Biochemistry 8:1496–1502

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by China Agriculture Research System (grant no. CARS-30-yz-2) and China Agricultural University Scientific Fund (grant no. 2012RC019). We are grateful to the friends in UC Davis who helped make this research possible: Qingfeng Huang for assistance in vector construction, Abhaya Dandekar for providing Agrobacterium tumefaciens and Kim J. Carney for supplying the embryogenic culture. We also express our gratitude to Wentao Xu in China Agricultural University for their microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Andrew Walker or Jiang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest..

Additional information

Rongrong He and Jiao Wu are contributed equally to this work.

Handling Editor: Hanns H. Kassemeyer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Wu, J., Zhang, Y. et al. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine. Protoplasma 254, 1579–1589 (2017). https://doi.org/10.1007/s00709-016-1047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1047-y

Keywords

Navigation