, Volume 254, Issue 4, pp 1547–1562 | Cite as

Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo

  • Jana Majerská
  • Petra Procházková Schrumpfová
  • Ladislav Dokládal
  • Šárka Schořová
  • Karel Stejskal
  • Michal Obořil
  • David Honys
  • Lucie Kozáková
  • Pavla Sováková Polanská
  • Eva Sýkorová
Original Article


The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions.


Telomerase TAP-MS AtPOT1a Pontin Reptin PURα1 



We thank Dr. David Potěšil, Prof. Jiří Fajkus and Assoc. Prof. Zbyněk Zdráhal (CEITEC, Masaryk University Brno, Czech Republic) and members of the research group Molecular Complexes of Chromatin and Proteomics Core Facility for fruitful discussions during past years of the project.

Compliance with ethical standards


This work was supported by the Grant Agency of the Czech Republic (13-06943S to ES), by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601), by the Academy of Sciences of the Czech Republic (RVO 68081707) and Masaryk University (MUNI/C/0981/2010 to JM). The MS analyses were carried out with support of the Proteomics Core Facility of CEITEC.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2016_1042_MOESM1_ESM.pdf (29.4 mb)
ESM 1 (PDF 30065 kb)
709_2016_1042_MOESM2_ESM.xlsx (767 kb)
Table S2 (XLSX 767 kb)
709_2016_1042_MOESM3_ESM.xlsx (428 kb)
Table S3 (XLSX 427 kb)
709_2016_1042_MOESM4_ESM.xlsx (407 kb)
Table S4 (XLSX 407 kb)
709_2016_1042_MOESM5_ESM.xlsx (36 kb)
Table S5 (XLSX 35 kb)
709_2016_1042_MOESM6_ESM.xlsx (80 kb)
Table S6 (XLSX 80 kb)


  1. Askree SH et al (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101:8658–8663PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bergemann AD, Johnson EM (1992) The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication. Mol Cell Biol 12:1257–1265PubMedPubMedCentralCrossRefGoogle Scholar
  3. Berthiau AS et al (2006) Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J 25:846–856PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena CJ, Gelvin SB (2008) IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in agrobacterium-mediated plant transformation. Plant Cell 20:2661–2680PubMedPubMedCentralCrossRefGoogle Scholar
  5. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289PubMedCrossRefGoogle Scholar
  7. Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277:47242–47247PubMedCrossRefGoogle Scholar
  8. Cifuentes-Rojas C, Kannan K, Tseng L, Shippen DE (2011) Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc Natl Acad Sci U S A 108:73–78PubMedCrossRefGoogle Scholar
  9. Cifuentes-Rojas C, Nelson AD, Boltz KA, Kannan K, She X, Shippen DE (2012) An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev 26:2512–2523PubMedPubMedCentralCrossRefGoogle Scholar
  10. Citovsky V et al (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131PubMedCrossRefGoogle Scholar
  11. Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7:484–494PubMedPubMedCentralCrossRefGoogle Scholar
  12. Collins K (2011) Single-stranded DNA repeat synthesis by telomerase. Curr Opin Chem Biol 15:643–648PubMedPubMedCentralCrossRefGoogle Scholar
  13. Collins K, Greider CW (1995) Utilization of ribonucleotides and RNA primers by Tetrahymena telomerase. EMBO J 14:5422–5432PubMedPubMedCentralGoogle Scholar
  14. Counter CM et al (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci U S A 95:14723–14728PubMedPubMedCentralCrossRefGoogle Scholar
  15. Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136:175–186PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dokladal L, Honys D, Rana R, Lee L-Y, Gelvin SB, Sykorova E (2015) cDNA library screening identifies protein interactors potentially involved in non-telomeric roles of Arabidopsis telomerase. Front Plant Sci 6:985. doi: 10.3389/fpls.2015.00985 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70PubMedPubMedCentralCrossRefGoogle Scholar
  19. Duplakova N, Renak D, Hovanec P, Honysova B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP)—user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7:39. doi: 10.1186/1471-2229-7-39
  20. Dvorackova M, Fojtova M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Plant J 83:18–37PubMedCrossRefGoogle Scholar
  21. Egan ED, Collins K (2010) Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 30:2775–2786PubMedPubMedCentralCrossRefGoogle Scholar
  22. Egan ED, Collins K (2012) Biogenesis of telomerase ribonucleoproteins. RNA 18:1747–1759PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eickbush TH (1997) Telomerase and retrotransposons: which came first? Science 277:911–912PubMedCrossRefGoogle Scholar
  24. Eliseeva IA, Lyabin DN, Ovchinnikov LP (2013) Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochemistry (Mosc) 78:1377–1391CrossRefGoogle Scholar
  25. Eugster A et al (2006) The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation. Nat Struct Mol Biol 13:734PubMedCrossRefGoogle Scholar
  26. Fisher TS, Taggart AK, Zakian VA (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol 11:1198–1205PubMedCrossRefGoogle Scholar
  27. Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A 96:14813–14818PubMedPubMedCentralCrossRefGoogle Scholar
  28. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J Biol Chem 276:15571–15574PubMedCrossRefGoogle Scholar
  29. Frohnert C, Hutten S, Walde S, Nath A, Kehlenbach RH (2014) Importin 7 and Nup358 promote nuclear import of the protein component of human telomerase. PLoS One 9:e88887. doi: 10.1371/journal.pone.0088887 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fu D, Collins K (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28:773–785PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14:208–214PubMedCrossRefGoogle Scholar
  32. Gatbonton T et al (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2:e35. doi: 10.1371/journal.pgen.0020035 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gelinas AD, Paschini M, Reyes FE, Heroux A, Batey RT, Lundblad V, Wuttke DS (2009) Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proc Natl Acad Sci U S A 106:19298–19303PubMedPubMedCentralCrossRefGoogle Scholar
  34. Giannone RJ, McDonald HW, Hurst GB, Shen RF, Wang Y, Liu Y (2010) The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1. PLoS One 5:e12407. doi: 10.1371/journal.pone.0012407 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Grolimund L, Aeby E, Hamelin R, Armand F, Chiappe D, Moniatte M, Lingner J (2013) A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat Commun 4:2848PubMedCrossRefGoogle Scholar
  36. Harrington L et al (1997) A mammalian telomerase-associated protein. Science 275:973–977PubMedCrossRefGoogle Scholar
  37. Her J, Chung IK (2012) The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly. Biochem Biophys Res Commun 417:1086–1092PubMedCrossRefGoogle Scholar
  38. Holt SE et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826PubMedPubMedCentralCrossRefGoogle Scholar
  39. Horak J et al (2008) The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 8:77PubMedPubMedCentralCrossRefGoogle Scholar
  40. Isemer R, Mulisch M, Schafer A, Kirchner S, Koop HU, Krupinska K (2012) Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett 586:85–88PubMedCrossRefGoogle Scholar
  41. Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13:218–225PubMedCrossRefGoogle Scholar
  42. Jamburuthugoda VK, Eickbush TH (2014) Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase. Nucleic Acids Res 42:8405–8415PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jiang J et al (2013) The architecture of Tetrahymena telomerase holoenzyme. Nature 496:187–192PubMedPubMedCentralCrossRefGoogle Scholar
  44. Karamysheva ZN, Surovtseva YV, Vespa L, Shakirov EV, Shippen DE (2004) A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis. J Biol Chem 279:47799–47807PubMedCrossRefGoogle Scholar
  45. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, Galloway DA (2007) NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J Virol 81:3786–3796PubMedPubMedCentralCrossRefGoogle Scholar
  46. Khurts S et al (2004) Nucleolin interacts with telomerase. J Biol Chem 279:51508–51515PubMedCrossRefGoogle Scholar
  47. Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT, Chung IK (2005) Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 19:776–781PubMedPubMedCentralCrossRefGoogle Scholar
  48. Krause K, Kilbienski I, Mulisch M, Rodiger A, Schafer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712PubMedCrossRefGoogle Scholar
  49. Kuchar M, Fajkus J (2004) Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett 578:311–315PubMedCrossRefGoogle Scholar
  50. Kwon C, Chung IK (2004) Interaction of an Arabidopsis RNA-binding protein with plant singlestranded telomeric DNA modulates telomerase activity. J Biol Chem 279:12812–12818Google Scholar
  51. Lee J et al (2008) TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27:3754–3760PubMedCrossRefGoogle Scholar
  52. Lee JH, Khadka P, Baek SH, Chung IK (2010) CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J Biol Chem 285:42033–42045PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lee L-Y et al (2012) Screening a cDNA library for protein-protein interactions directly in planta. Plant Cell 24:1746–1759PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li C, Wong WH (2001a) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98:31–36PubMedCrossRefGoogle Scholar
  55. Li C, Wong WH (2001b) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2:RESEARCH0032PubMedPubMedCentralGoogle Scholar
  56. Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93:10712–10717PubMedPubMedCentralCrossRefGoogle Scholar
  57. Majerska J, Sykorova E, Fajkus J (2011) Non-telomeric activities of telomerase. Mol BioSyst 7:1013–1023PubMedCrossRefGoogle Scholar
  58. Makovets S, Blackburn EH (2009) DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 11:1383–1386PubMedPubMedCentralCrossRefGoogle Scholar
  59. Min B, Collins K (2009) An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol Cell 36:609–619PubMedPubMedCentralCrossRefGoogle Scholar
  60. Moriarty TJ, Marie-Egyptienne DT, Autexier C (2004) Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol Cell Biol 24:3720–3733PubMedPubMedCentralCrossRefGoogle Scholar
  61. Moser BA, Nakamura TM (2009) Protection and replication of telomeres in fission yeast. Biochem Cell Biol 87:747–758PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mozdy AD, Podell ER, Cech TR (2008) Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance. Mol Cell Biol 28:4152–4161PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nittis T et al (2010) Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS. Mol Cell Proteomics 9:1144–1156PubMedPubMedCentralCrossRefGoogle Scholar
  64. Oguchi K, Liu H, Tamura K, Takahashi H (1999) Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. FEBS Lett 457:465–469PubMedCrossRefGoogle Scholar
  65. Oh W et al (2010) Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene 29:4101–4112PubMedCrossRefGoogle Scholar
  66. Okamoto N et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci U S A 108:20388–20393PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ouellette MM, Aisner DL, Savre-Train I, Wright WE, Shay JW (1999) Telomerase activity does not always imply telomere maintenance. Biochem Biophys Res Commun 254:795–803PubMedCrossRefGoogle Scholar
  68. Pendle AF et al (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269PubMedPubMedCentralCrossRefGoogle Scholar
  69. Petrov AV, Dokudovskaya SS, Sokolov KA, Lavrik OI, Favre A, Dontsova OA, Bogdanov AA (1998) Telomerase from Saccharomyces cerevisiae contains several protein subunits and may have different activities depending on the protein content. FEBS Lett 436:35–40PubMedCrossRefGoogle Scholar
  70. Prescott J, Blackburn EH (1997) Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev 11:2790–2800PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ray S, Karamysheva Z, Wang L, Shippen DE, Price CM (2002) Interactions between telomerase and primase physically link the telomere and chromosome replication machinery. Mol Cell Biol 22:5859–5868PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ribaud V, Ribeyre C, Damay P, Shore D (2012) DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. EMBO J 31:138–149PubMedCrossRefGoogle Scholar
  73. Rossignol P, Collier S, Bush M, Shaw P, Doonan JH (2007) Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J Cell Sci 120:3678–3687PubMedCrossRefGoogle Scholar
  74. Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41:767–778PubMedCrossRefGoogle Scholar
  75. Safak M, Gallia GL, Khalili K (1999) Reciprocal interaction between two cellular proteins, Puralpha and YB-1, modulates transcriptional activity of JCVCY in glial cells. Mol Cell Biol 19:2712–2723PubMedPubMedCentralCrossRefGoogle Scholar
  76. Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3:399–411PubMedCrossRefGoogle Scholar
  77. Schmidt JC, Cech TR (2015) Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev 29:1095–1105PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schrumpfova PP, Vychodilova I, Dvorackova M, Majerska J, Dokladal L, Schorova S, Fajkus J (2014) Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J 77:770–781PubMedCrossRefGoogle Scholar
  79. Schrumpfova PP, Vychodilova I, Hapala J, Schorova S, Dvoracek V, Fajkus J (2016) Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Mol Biol 90:189–206PubMedCrossRefGoogle Scholar
  80. Sealey DC (2010) Regulation of telomerase by DNA and protein interactions. University of TorontoGoogle Scholar
  81. Sealey DC, Zheng L, Taboski MA, Cruickshank J, Ikura M, Harrington LA (2010) The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization. Nucleic Acids Res 38:2019–2035PubMedCrossRefGoogle Scholar
  82. Seimiya H, Sawada H, Muramatsu Y, Shimizu M, Ohko K, Yamane K, Tsuruo T (2000) Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 19:2652–2661PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sevcikova T, Bisova K, Fojtova M, Lukesova A, Hrckova K, Sykorova E (2013) Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda. FEBS Lett 587:743–748PubMedCrossRefGoogle Scholar
  84. Stewart JA, Chaiken MF, Wang F, Price CM (2012) Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 730:12–19PubMedCrossRefGoogle Scholar
  85. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974PubMedCrossRefGoogle Scholar
  86. Surovtseva YV, Shakirov EV, Vespa L, Osbun N, Song X, Shippen DE (2007) Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO J 26:3653–3661PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sykorova E, Leitch AR, Fajkus J (2006) Asparagales telomerases which synthesize the human type of telomeres. Plant Mol Biol 60:633–646PubMedCrossRefGoogle Scholar
  88. Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452PubMedCrossRefGoogle Scholar
  89. Taggart AK, Teng SC, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297:1023–1026PubMedCrossRefGoogle Scholar
  90. Teixeira MT, Gilson E (2007) La sets the tone for telomerase assembly. Nat Struct Mol Biol 14:261–262PubMedCrossRefGoogle Scholar
  91. Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP (2006) Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17:955–965PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, Terns MP (2008) Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells. Mol Biol Cell 19:3793–3800PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B (1999) Plant interstitial telomere motifs participate in the control of gene expression in root meristems. Plant J 20:553–561PubMedCrossRefGoogle Scholar
  94. Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M (2009) A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 37:3840–3849PubMedPubMedCentralCrossRefGoogle Scholar
  95. Van Leene J et al (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6:1226–1238PubMedCrossRefGoogle Scholar
  96. Van Leene J et al (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397. doi: 10.1038/msb.2010.53 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Van Leene J et al (2011) Isolation of transcription factor complexes from Arabidopsis cell suspension cultures by tandem affinity purification. Methods Mol Biol 754:195–218PubMedCrossRefGoogle Scholar
  98. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132:945–957PubMedPubMedCentralCrossRefGoogle Scholar
  99. Watson JM, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584:3752–3759PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362PubMedCrossRefGoogle Scholar
  101. Wisniewski JR, Zielinska DF, Mann M (2011) Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Anal Biochem 410:307–309PubMedCrossRefGoogle Scholar
  102. Witkin KL, Collins K (2004) Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev 18:1107–1118PubMedPubMedCentralCrossRefGoogle Scholar
  103. Witkin KL, Prathapam R, Collins K (2007) Positive and negative regulation of Tetrahymena telomerase holoenzyme. Mol Cell Biol 27:2074–2083PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 29:4818–4825PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yoo HH, Kwon C, Lee MM, Chung IK (2007) Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J 49:442–451PubMedCrossRefGoogle Scholar
  106. Zachova D et al (2013) Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol Plant 149:114–126PubMedCrossRefGoogle Scholar
  107. Zhou Y, Hartwig B, James GV, Schneeberger K, Turck F (2016) Complementary activities of TELOMERE REPEAT BINDING proteins and Polycomb group complexes in transcriptional regulation of target genes. Plant Cell 28:87–101PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Jana Majerská
    • 1
    • 2
    • 3
  • Petra Procházková Schrumpfová
    • 2
    • 3
  • Ladislav Dokládal
    • 1
  • Šárka Schořová
    • 2
  • Karel Stejskal
    • 2
  • Michal Obořil
    • 2
  • David Honys
    • 4
  • Lucie Kozáková
    • 2
  • Pavla Sováková Polanská
    • 2
  • Eva Sýkorová
    • 1
  1. 1.Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Central European Institute of Technology and Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Institute of Experimental BiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations