, Volume 254, Issue 2, pp 685–696 | Cite as

SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza

  • Huaiqin Wang
  • Yucui Wu
  • Xinbing Yang
  • Xiaorong Guo
  • Xiaoyan CaoEmail author
Original Article


Abiotic stresses, such as drought and high salinity, are major factors that limit plant growth and productivity. Late embryogenesis abundant (LEA) proteins are members of a diverse, multigene family closely associated with tolerance to abiotic stresses in numerous organisms. We examined the function of SmLEA2, previously isolated from Salvia miltiorrhiza, in defense responses to drought and high salinity. Phylogenetic analysis indicated that SmLEA2 belongs to the LEA_2 subfamily. Its overexpression in Escherichia coli improved growth performance when compared with the control under salt and drought stresses. We further characterized its roles in S. miltiorrhiza through overexpression and RNAi-mediated silencing. In response to drought and salinity treatments, transgenic plants overexpressing SmLEA2 exhibited significantly increased superoxide dismutase activity, reduced levels of lipid peroxidation, and more vigorous growth than empty-vector control plants did. However, transgenic lines in which expression was suppressed showed the opposite results. Our data demonstrate that SmLEA2 plays an important role in the abiotic stress response and its overexpression in transgenic S. miltiorrhiza improves tolerance to excess salt and drought conditions.


LEA Salvia miltiorrhiza Abiotic stress Escherichia coli 



This work benefited from financial support from the Natural Science Foundation of Shaanxi Province, China (2014JQ3107) and the Fundamental Research Funds for the Central Universities (GK201302043).

Compliance with Ethical Standard

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans Roy Soc Lond B 355:1419–1431. doi: 10.1098/rstb.2000.0703 CrossRefGoogle Scholar
  2. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24. doi: 10.1104/pp.108.120725 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124. doi: 10.1007/s11103-008-9304-x CrossRefPubMedGoogle Scholar
  4. Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larré C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicals of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140(4):1418–1436. doi: 10.1104/pp.105.074039 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116. doi: 10.1146/annurev.pp.43.060192.000503 CrossRefGoogle Scholar
  6. Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103(4):1035–1040CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, USA, pp 1158–1249Google Scholar
  8. Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26:3148–3166. doi: 10.1105/tpc.114.127316 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100(2):291–296. doi: 10.1111/j.1399-3054.1997.tb04785.x CrossRefGoogle Scholar
  10. Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32(1):79–91. doi: 10.1093/jxb/32.1.79 CrossRefGoogle Scholar
  11. Dong Y, Morris-Natschke SL, Lee KH (2011) Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep 28(3):529–542. doi: 10.1039/c0np00035c CrossRefPubMedGoogle Scholar
  12. Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3(3):363–369CrossRefPubMedGoogle Scholar
  13. Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20(14):4162–4168CrossRefPubMedGoogle Scholar
  14. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27(2):129–138. doi: 10.1046/j.1365-313x.2001.01077.x CrossRefPubMedGoogle Scholar
  15. Hunault G, Jaspard E (2010) LEAPdb: a database for the late embryogenesis abundant proteins. BMC Genom 11:221. doi: 10.1186/1471-2164-11-221 CrossRefGoogle Scholar
  16. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118. doi: 10.1186/1471-2164-9-118 CrossRefGoogle Scholar
  17. Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20(3):555–558. doi: 10.1007/BF00040614 CrossRefPubMedGoogle Scholar
  18. Jaspard E, Macherel D, Hunault G (2012) Computational and statistical analyses of amino acid usage and physico-chemical properties of the twelve late embryogenesis abundant protein classes. PLoS One 7(5), e36968. doi: 10.1371/journal.pone.0036968 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jaspers P, Brosché M, Overmyer K, Kangasjärvi J (2010) The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signal Behav 5(1):78–80CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jia F, Qi S, Li H, Liu P, Li P, Wu C, Zheng C, Huang J (2014) Overexpression of late embryogenesis abundant 14 enhances arabidopsis salt stress tolerance. Biochem Biophys Res Commun 454(4):505–511. doi: 10.1016/j.bbrc CrossRefPubMedGoogle Scholar
  21. Jin H, Dong D, Yang Q, Zhu D (2016) Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing. PLoS One 11(3), e0150504. doi: 10.1371/journal.pone.0150504 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kai G, Hao X, Cui L, Ni X, Zekria D, Wu J (2014) Metabolic engineering and biotechnological approaches for production of bioactive diterpene tanshinones in Salvia miltiorrhiza. Biotechnol Adv. doi: 10.1016/j.biotechadv.2014.10.001 PubMedGoogle Scholar
  23. Kaye C, Neven L, Hofig A, Li Q-B, Haskell D, Guy C (1998) Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116(4):1367–1377CrossRefPubMedPubMedCentralGoogle Scholar
  24. Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, Takezawa D, Seki M, Tanaka M, Taji T, Hayashi T, Sakata Y (2013) Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nat Commun 4:2219. doi: 10.1038/ncomms3219 PubMedPubMedCentralGoogle Scholar
  25. Krasensky J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. doi: 10.1093/jxb/err460 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. doi: 10.1016/0022-2836(82)90515-0 CrossRefPubMedGoogle Scholar
  27. Li C, Lu S (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genom 15:277. doi: 10.1186/1471-2164-15-277 CrossRefGoogle Scholar
  28. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148(1):350–382CrossRefGoogle Scholar
  29. Liu CL, Wang ZZ (2009) Cloning and expression analysis of SmLEA from Salvia miltiorrhiza Bunge. Biotechnol Bull 5:80–84Google Scholar
  30. Liu CL, Wang ZZ (2010) Gene expression analysis of a late embryogenesis abundant gene from Salvia miltiorrhiza Bunge. China Biotechnology 30(1):51–55Google Scholar
  31. Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Comm 331(1):325–332. doi: 10.1016/j.bbrc.2005.03.165 CrossRefPubMedGoogle Scholar
  32. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  33. Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154(2):521–525. doi: 10.1104/pp.110.161406 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(1):651–681. doi: 10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  35. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237–1247CrossRefPubMedGoogle Scholar
  36. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229(4):911–929. doi: 10.1007/s00425-008-0878-y CrossRefPubMedGoogle Scholar
  38. Shao H-B, Liang Z-S, Shao M-A (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloid Surface B 45:131–135. doi: 10.1016/j.colsurfb.2005.07.017 CrossRefGoogle Scholar
  39. Song J, Wang ZZ (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124(1):183–192. doi: 10.1007/s10265-010-0350-5 CrossRefPubMedGoogle Scholar
  40. Sun X, Rikkerink EH, Jones WT, Uversky VN (2013) Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 25(1):38–55. doi: 10.1105/tpc.112.106062 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94(10):791–812. doi: 10.1007/s00114-007-0254-y CrossRefPubMedGoogle Scholar
  42. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7): RESEARCH0034Google Scholar
  43. Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88(2):437–449. doi: 10.1007/s00253-010-2797-7 CrossRefPubMedGoogle Scholar
  44. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172(2):414–420. doi: 10.1016/j.plantsci.2006.10.004 CrossRefGoogle Scholar
  45. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27(6):581–590. doi: 10.1046/j.1365-313X.2001.01105.x CrossRefPubMedGoogle Scholar
  46. Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform 4:52. doi: 10.1186/1471-2105-4-52 CrossRefGoogle Scholar
  47. Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9(1):13–17. doi: 10.1016/j.tplants.2003.10.012 CrossRefPubMedGoogle Scholar
  48. Wu Y, Liu C, Kuang J, Ge Q, Zhang Y, Wang Z (2014) Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza. Protoplasma 251(5):1191–1199. doi: 10.1007/s00709-014-0626-z CrossRefPubMedGoogle Scholar
  49. Wu Y, Ge Q, Zhou H, Jin X, Wang Z (2015) Molecular cloning and expression analysis of a late embryogenesis abundant protein gene (SmLEA2) from Salvia miltiorrhiza. Chin Trad Herb Drugs 46:1966–1974Google Scholar
  50. Xu H, Zhang L, Zhou CC, Xiao JB, Liao P, Kai GY (2010) Metabolic regulation and genetic engineering of pharmaceutical component tanshinone biosynthesis in Salvia miltiorrhiza. J Med Plants Res 4(24):2591–2597CrossRefGoogle Scholar
  51. Yan XJ (2013) Cyclopedia of Danshen. People’s Medical Publishing House, Beijing, ChinaGoogle Scholar
  52. Yan Y, Wang Z (2007) Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Org Cult 88:175–184. doi: 10.1007/s11240-006-9187-y CrossRefGoogle Scholar
  53. Zhang X, Lu S, Jiang C, Wang Y, Lv B, Shen J, Ming F (2014) RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses. Plant Mol Biol 85(4–5):333–347. doi: 10.1007/s11103-014-0192-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Huaiqin Wang
    • 1
  • Yucui Wu
    • 1
  • Xinbing Yang
    • 1
  • Xiaorong Guo
    • 1
  • Xiaoyan Cao
    • 1
    Email author
  1. 1.Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of ChinaShaanxi Normal UniversityXi’anChina

Personalised recommendations