Skip to main content
Log in

A rise of ploidy level influences the rate of cytomixis in tobacco male meiosis

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The effect of plant ploidy level on the rate of cytomixis in microsporogenesis has been analyzed with the help of a unique model, the collection of tobacco plants of different ploidies (2n = 2x = 24, 4x = 48, 6x = 72, and 8x = 96). As has been shown, the rate of cytomixis proportionally increases in 6x and 8x cytotypes, being rather similar in 2x and 4x plants. The rate of cytomixis is highly variable, differing even in the genetically identical plants grown under the same conditions. The cytological pattern of cytomixis in the microsporogenesis of control 4x plants has been compared with the corresponding patterns of 2x, 6x, and 8x plants. Involvement of cytomixis in production of unreduced gametes and stabilization of the newly formed hybrid and polyploidy genomes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Anagnostakis SL (1974) Haploid plants from anthers of tobacco—Enhancement with charcoal. Planta 115:281–283

    Article  CAS  PubMed  Google Scholar 

  • Arnoldy W (1900) Beiträge zur Morphologie der Gymnospermen. IV. Was sind die “Keimbläschen” oder “Hofmeisters-Körperchen” in der Eizelle der Abietineen? Flora 87:194–204

    Google Scholar 

  • Baptista-Giacomelli FR, Pagliarini MS, Almeida JL (2000) Elimination of micronuclei from microspores in a Brazilian oat (Avena sativa L.) variety. Genet Mol Biol 23:681–684

    Article  Google Scholar 

  • Barton DA, Cantrill LC, Law AMK et al (2014) Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. Plant Cell Environ 37:2781–2794

    Article  CAS  PubMed  Google Scholar 

  • Falistocco E, Tosti N, Falcinelli M (1995) Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J Hered 86:448–453

    Google Scholar 

  • Gates RR (1911) Pollen formation in Oenothera gigas. Ann Bot 25:909–940

    Google Scholar 

  • Ghaffari SM (2006) Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr J Biotechnol 5:1450–1453

    Google Scholar 

  • Guan JZ, Wang JJ, Cheng ZH et al (2012) Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata. Genet Mol Res 11:121–130

    Article  PubMed  Google Scholar 

  • Kalinka A, Achrem M, Rogalska SM (2010) Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. Nucleus 53:69–83

    Article  Google Scholar 

  • Kumar P, Singhal VK, Rana PK et al (2011) Cytology of Ranunculus laetus Wall. ex Royle from cold desert regions and adjoining hills of North-West Himalayas (India). Caryologia 64:25–32

    Article  Google Scholar 

  • Kumar P, Rana PK, Himshikha et al (2014) Cytogeography and phenomenon of cytomixis in Silene vulgaris from cold regions of Northwest Himalayas (India). Plant Syst Evol 300:831–842

    Article  Google Scholar 

  • Lattoo SK, Khan S, Bamotra S, Dhar AK (2006) Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq.—an additional strategy and possible implications. J Biosci 31:629–637

    Article  CAS  PubMed  Google Scholar 

  • Lavia GI, Ortiz AM, Robledo G et al (2011) Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour. Ann Bot 108:103–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim KY, Matyásek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258

    Article  CAS  PubMed  Google Scholar 

  • Lone A, Lone S (2013) Cytomixis—a well known but less understood phenomenon in plants. Int J Recent Sci Res 4:347–352

    Google Scholar 

  • Mandal A, Datta AK (2012) Inter- and intra-plant variations in cytomictic behavior of chromosomes in Corchorus fascicularis Lamk. (Tiliaceae). Cytologia (Tokyo) 77:269–277

    Article  Google Scholar 

  • Mursalimov SR, Deineko EV (2011) An ultrastructural study of cytomixis in tobacco pollen mother cells. Protoplasma 248:717–724

    Article  PubMed  Google Scholar 

  • Mursalimov SR, Deineko EV (2012) An ultrastructural study of microsporogenesis in tobacco line SR1. Biologia (Bratisl) 67:369–376

    Article  CAS  Google Scholar 

  • Mursalimov SR, Deineko EV (2015) How cytomixis can form unreduced gametes in tobacco. Plant Syst Evol 301:1293–1297

    Article  CAS  Google Scholar 

  • Mursalimov S, Sidorchuk Y, Deineko E (2013a) The role of spherosome-like vesicles in formation of cytomictic channels between tobacco microsporocytes. Biol Plant 57:291–297

    Article  Google Scholar 

  • Mursalimov SR, Sidorchuk YV, Deineko EV (2013b) New insights into cytomixis: specific cellular features and prevalence in higher plants. Planta 238:415–423

    Article  CAS  PubMed  Google Scholar 

  • Mursalimov S, Sidorchuk Y, Baiborodin S, Deineko E (2015) Distribution of telomeres in the tobacco meiotic nuclei during cytomixis. Cell Biol Int 39:491–495

    Article  CAS  PubMed  Google Scholar 

  • Negron-Ortiz V (2007) Chromosome numbers, nuclear dna content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean Islands. Am J Bot 94:1360–1370

    Article  PubMed  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87 (80-)

    Article  CAS  PubMed  Google Scholar 

  • Pécrix Y, Rallo G, Folzer H et al (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot 62:3587–3597

    Article  PubMed  Google Scholar 

  • Peng ZS, Yang J, Zheng GC (2003) Cytomixis in pollen mother cells of new synthetic hexaploid amphidiploid (Aegilops tauschii × Triticum turgidum). Cytologia (Tokyo) 68:335–340

    Article  Google Scholar 

  • Shibata F, Nagaki K, Yokota E, Murata M (2013) Tobacco karyotyping by accurate centromere identification and novel repetitive DNA localization. Chromosom Res 21:375–381

    Article  CAS  Google Scholar 

  • Sidorchuk YV, Deineko EV, Shumny VK (2007) Role of microtubular cytoskeleton and callose walls in the manifestation of cytomixis in pollen mother cells of tobacco Nicotiana tabacum L. Cell Tissue Biol 1:577–581

    Article  Google Scholar 

  • Sidorchuk Y, Novikovskaya A, Deineko E (2015) Cytomixis in the cereal (Gramineae) microsporogenesis. Protoplasma. doi:10.1007/s00709-015-0807-4

    Google Scholar 

  • Soodan AS, Wafai BA (1987) Spontaneous occurrence of cytomixis during microsporogenesis in almond (Prunus amygdalus Batsch) and peach (Prunus persica Batsch). Cytologia (Tokyo) 52:361–364

    Article  Google Scholar 

  • Wang XY, Nie XW, Guo GQ et al (2002) Ultrastructural characterization of the cytoplasmic channel formation between pollen mother cells of David lily. Caryologia 55:161–169

    Article  Google Scholar 

  • Wang XY, Yu CH, Li X et al (2004) Ultrastructural aspects and possible origin of cytomictic channels providing intercellular connection in vegetative tissues of anthers. Russ J Plant Physiol 51:110–120

    Article  Google Scholar 

  • Yu CH, Guo GQ, Nie XW, Zheng GC (2004) Cytochemical localization of pectinase activity in pollen mother cells of tobacco during meiotic prophaseIand its relation to the formation of secondary plasmodesmata and cytoplasmic channels. Acta Bot Sin 46:1443–1453

    Google Scholar 

  • Zhou SQ (2003) Viewing the difference between the diploid and the polyploid in the light of the upland cotton aneuploid. Hereditas 138:65–72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation for Basic Research (grant no. 14-04-31567 mol_a), Program of Siberian Branch of Russian Academy of Science “Fundamental bases of biotechnology creating therapies and diagnosis of diseases”, Theme VI.62.1.5. (0324-2014-0017), and the German Research Foundation, SFB 648 “Molecular mechanisms of information processing in plants”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Mursalimov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Heiti Paves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mursalimov, S., Sidorchuk, Y., Demidov, D. et al. A rise of ploidy level influences the rate of cytomixis in tobacco male meiosis. Protoplasma 253, 1583–1588 (2016). https://doi.org/10.1007/s00709-015-0907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0907-1

Keywords

Navigation