Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications

Abstract

Despite great efforts in tissue engineering of the ureter, urinary bladder, and urethra, further research is needed in order to improve the patient’s quality of life and minimize the economic burden of different lower urinary tract disorders. The nanostructured titanium dioxide (TiO2) scaffolds have a wide range of clinical applications and are already widely used in orthopedic or dental medicine. The current study was conducted to synthesize TiO2 nanotubes by the anodization method and TiO2 nanowires and nanospheres by the chemical vapor deposition method. These scaffolds were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. In order to test the urologic applicability of generated TiO2 scaffolds, we seeded the normal porcine urothelial (NPU) cells on TiO2 nanotubes, TiO2 nanowires, TiO2 nanospheres, and on the standard porous membrane. The viability and growth of the cells were monitored everyday, and after 3 weeks of culturing, the analysis with scanning electron microscope (SEM) was performed. Our results showed that the NPU cells were attached on all scaffolds; they were viable and formed a multilayered epithelium, i.e., urothelium. The apical plasma membrane of the majority of superficial NPU cells, grown on all three different TiO2 scaffolds and on the porous membrane, exhibited microvilli; thus, indicating that they were at a similar differentiation stage. The maximal caliper diameter measurements of superficial NPU cells revealed significant alterations, with the largest cells being observed on nanowires and the smallest ones on the porous membrane. Our findings indicate that different nanostructured TiO2 scaffolds, especially nanowires, have a great potential for tissue engineering and should be further investigated for various urologic applications.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Awadi K, Kehinde EO et al (2005) Iatrogenic ureteric injuries: incidence, aetiological factors and the effect of early management on subsequent outcome. Int Urol Nephrol 37(2):235–241

    PubMed  Article  Google Scholar 

  2. Alpaslan E, Ercan B et al (2011) Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications. Int J Nanomedicine 6:219–225

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Atala A (1999) Future perspectives in reconstructive surgery using tissue engineering. Urol Clin N Am 26(1):157–165, ix-x

    CAS  Article  Google Scholar 

  4. Atala A (2006) Recent applications of regenerative medicine to urologic structures and related tissues. Curr Opin Urol 16(4):305–309

    PubMed  Article  Google Scholar 

  5. Atala A, Bauer SB et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246

    PubMed  Article  Google Scholar 

  6. Carbone R, Marangi I et al (2006) Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. Biomaterials 27(17):3221–3229

    CAS  PubMed  Article  Google Scholar 

  7. Eberli D, Susaeta R et al (2007) Tunica repair with acellular bladder matrix maintains corporal tissue function. Int J Impot Res 19(6):602–609

    CAS  PubMed  Article  Google Scholar 

  8. Fraser M, Thomas DF et al (2004) A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int 93(4):609–616

    CAS  PubMed  Article  Google Scholar 

  9. Fu WJ, Xu YD et al (2012) New ureteral scaffold constructed with composite poly(L-lactic acid)-collagen and urothelial cells by new centrifugal seeding system. J Biomed Mater Res A 100(7):1725–1733

    PubMed  Article  Google Scholar 

  10. Gongadze E, Kabaso D et al (2011) Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomedicine 6:1801–1816

    PubMed  PubMed Central  Google Scholar 

  11. Hamilton RF, Wu N et al (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35

    PubMed  PubMed Central  Article  Google Scholar 

  12. Imani R, Kabaso D et al (2012) Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces. Croat Med J 53(6):577–585

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Jerman UD, ME Kreft et al. (2015) "Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering." Tissue Eng Part B Rev

  14. Kreft ME, Di Giandomenico D et al (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102(11):593–607

    CAS  PubMed  Article  Google Scholar 

  15. Kreft ME, Robenek H (2012) Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PLoS ONE 7(6):e38509

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Kreft ME, Romih R et al (2002) Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder. Cell Biol Int 26(1):63–74

    CAS  PubMed  Article  Google Scholar 

  17. Kreft ME, Sterle M et al (2006) Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochem Cell Biol 125(5):475–485

    CAS  PubMed  Article  Google Scholar 

  18. Kreft ME, Sterle M et al (2005) Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochem Cell Biol 123(4–5):529–539

    CAS  PubMed  Article  Google Scholar 

  19. Kulkarni M, Flasker A et al (2015) Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine 10:1359–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee K, Mazare A et al (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114(19):9385–9454

    CAS  PubMed  Article  Google Scholar 

  21. Liu H, Zhang Y et al (2012) Synthesis and characterization of TiO2@C core-shell nanowires and nanowalls via chemical vapor deposition for potential large-scale production. J Colloid Interface Sci 367(1):115–119

    CAS  PubMed  Article  Google Scholar 

  22. Luthen F, Lange R et al (2005) The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials 26(15):2423–2440

    PubMed  Article  Google Scholar 

  23. Mardis HK, Kroeger RM (1988) Ureteral stents. Materials. Urol Clin N Am 15(3):471–479

    CAS  Google Scholar 

  24. McAninch JW (2005) Urethral reconstruction: a continuing challenge. J Urol 173(1):7–7

    PubMed  Article  Google Scholar 

  25. McManus M, Boland E et al (2007) Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater 2(4):257–262

    CAS  PubMed  Article  Google Scholar 

  26. Park EJ, Shim HW et al (2013) Comparison of toxicity between the different-type TiO(2) nanowires in vivo and in vitro. Arch Toxicol 87(7):1219–1230

    CAS  PubMed  Article  Google Scholar 

  27. Park J, Bauer S et al (2009) Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett 9(9):3157–3164

    CAS  PubMed  Article  Google Scholar 

  28. Park J, Bauer S et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691

    CAS  PubMed  Article  Google Scholar 

  29. Pazoki M, Taghavinia N et al (2012) CVD-grown TiO2 particles as light scattering structures in dye sensitized solar cells. Rsc Adv 2:12278–12285

  30. Raya-Rivera A, Esquiliano DR et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377(9772):1175–1182

    PubMed  PubMed Central  Article  Google Scholar 

  31. Romih R, Jezernik K (1996) Reorganisation of the urothelial luminal plasma membrane in the cyclophosphamide treated rats. Pflugers Arch 431(6 Suppl 2):R241–R242

    CAS  PubMed  Article  Google Scholar 

  32. Romih R, Koprivec D et al (2001) Restoration of the rat urothelium after cyclophosphamide treatment. Cell Biol Int 25(6):531–537

    CAS  PubMed  Article  Google Scholar 

  33. Romih R, Korosec P et al (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320(2):259–268

    PubMed  Article  Google Scholar 

  34. Selvaraj SK, Jursich G et al (2013) Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor. Rev Sci Instrum 84(9):095109

    PubMed  Article  Google Scholar 

  35. Southgate J, Cross W et al (2003) Bladder reconstruction—from cells to materials. Proc Inst Mech Eng H 217(4):311–316

    CAS  PubMed  Article  Google Scholar 

  36. Subramaniam R, Turner AM et al (2012) Seromuscular grafts for bladder reconstruction: extra-luminal demucosalisation of the bowel. Urology 80(5):1147–1150

    PubMed  PubMed Central  Article  Google Scholar 

  37. Vance RJ, Miller DC et al (2004) Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 25(11):2095–2103

    CAS  PubMed  Article  Google Scholar 

  38. Veranic P, Romih R et al (2004) What determines differentiation of urothelial umbrella cells? Eur J Cell Biol 83(1):27–34

    PubMed  Article  Google Scholar 

  39. Visnjar T, Kocbek P et al (2012) Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137(2):177–186

    CAS  PubMed  Article  Google Scholar 

  40. Visnjar T, Kreft ME (2013) Air-liquid and liquid-liquid interfaces influence the formation of the urothelial permeability barrier in vitro. Vitro Cell Dev Biol Anim 49(3):196–204

    CAS  Article  Google Scholar 

  41. Visnjar T, Kreft ME (2015) The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol 143(1):95–107

    CAS  PubMed  Article  Google Scholar 

  42. Wagner V, Dullaart A et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217

    CAS  PubMed  Article  Google Scholar 

  43. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    CAS  PubMed  Article  Google Scholar 

  44. Yoo JJ, Olson J et al (2011) Regenerative medicine strategies for treating neurogenic bladder. Int Neurourol J 15(3):109–119

    PubMed  PubMed Central  Article  Google Scholar 

  45. Zhu X, Chen J et al (2004) Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 178(1):13–22

    CAS  PubMed  Article  Google Scholar 

  46. Zupancic D, Romih R et al (2014) Molecular ultrastructure of the urothelial surface: insights from a combination of various microscopic techniques. Microsc Res Tech 77(11):896–901

    CAS  PubMed  Article  Google Scholar 

  47. Zupančič, D., R. Romih, et al. (2014). "Molecular ultrastructure of the urothelial surface: Insights from a combination of various microscopic techniques." Microsc Res Tech

Download references

Acknowledgments

We express gratitude to Sanja Čabraja, Nada Pavlica Dubarič, Linda Štrus, and Sabina Železnik for their technical assistance. This study was supported by a grant from the Slovenian Research Agency ARRS P2-0232 and P3-0108.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleš Iglič.

Ethics declarations

The experiments were approved by the Veterinary Administration of the Slovenian Ministry of Agriculture and Forestry (permit no. 34401-1/2010/6) in compliance with the Animal Health Protection Act and Instructions for Granting Permits for Animal Experimentation for Scientific Purposes.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christos D. Katsetos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imani, R., Pazoki, M., Zupančič, D. et al. Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications. Protoplasma 253, 1439–1447 (2016). https://doi.org/10.1007/s00709-015-0896-0

Download citation

Keywords

  • Nanostructured TiO2 scaffolds
  • Anodization
  • Chemical vapor deposition
  • Normal porcine urothelial cells
  • Urologic application