Skip to main content

Advertisement

Log in

Centrosome positioning in non-dividing cells

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aPKC:

Atypical protein kinase C

KASH domain:

Klarsicht, ANC-1 and Syne/Nesprin homology domain

IS:

Immunological synapse

LINC complex:

Linker of nucleoskeleton and cytoskeleton complex

MT:

Microtubule

MTOC:

mMicrotubule organising centre

NMII:

Non-muscle myosin II

SUN domain:

Sad1 and UNC-84 homology domain

TCR:

T cell receptor

References

  • Abdelhamed ZA, Wheway G, Szymanska K, Natarajan S, Toomes C, Inglehearn C, Johnson CA (2013) Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel–Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis. Shh and Wnt signalling defects. Hum Mol Genet 22:1358–1372. doi:10.1093/hmg/dds546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abughrien BM, Dore MA (2000) Ciliogenesis in the uterine tube of control and superovulated heifers Cells, tissues, organs 166:338–348 doi:16749

  • Adams M, Smith UM, Logan CV, Johnson CA (2008) Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet 45:257–267

    Article  CAS  PubMed  Google Scholar 

  • Adams M et al (2012) A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet 21:1272–1286

    Article  CAS  PubMed  Google Scholar 

  • Albrecht-Buehler G, Bushnell A (1979) The orientation of centrioles in migrating 3T3 cells. Exp Cell Res 120:111–118

    Article  CAS  PubMed  Google Scholar 

  • Alieva IB, Vorobjev IA (2004) Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells? Cell Biol Int 28:139–150

    Article  PubMed  Google Scholar 

  • Allen WE, Zicha D, Ridley AJ, Jones GE (1998) A role for Cdc42 in macrophage chemotaxis. J Cell Biol 141:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RG, Brenner RM (1971) The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J Cell Biol 50:10–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrés-Delgado L, Antón OM, Bartolini F, Ruiz-Sáenz A, Correas I, Gundersen GG, Alonso MA (2012) INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells. J Cell Biol 198:1025–1037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrés-Delgado L, Antón OM, Alonso MA (2013) Centrosome polarization in T cells: a task for formins Frontiers in Immunology 4 doi:10.3389/fimmu.2013.00191

  • Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995

    Article  CAS  PubMed  Google Scholar 

  • Ardouin L, Bracke M, Mathiot A, Pagakis SN, Norton T, Hogg N, Tybulewicz VLJ (2003) Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur J Immunol 33:790–797

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Banerjee PP, Pandey R, Zheng R, Suhoski MM, Monaco-Shawver L, Orange JS (2007) Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J Experimental Med 204:2305–2320

    Article  CAS  Google Scholar 

  • Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Bellion A, Baudoin J-P, Alvarez C, Bornens M, Métin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neuroscience 25:5691–5699

    Article  CAS  PubMed  Google Scholar 

  • Bershteyn M, Atwood SX, Woo WM, Li M, Oro AE (2010) MIM and cortactin antagonism regulates ciliogenesis and hedgehog signaling. Dev Cell 19:270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand F, Esquerré M, Petit A-E, Rodrigues M, Duchez S, Delon J, Valitutti S (2010) Activation of the ancestral polarity regulator protein Kinase Cζ at the immunological synapse drives polarization of Th cell secretory machinery toward APCs. J Immunol 185:2887–2894

    Article  CAS  PubMed  Google Scholar 

  • Bertrand F, Müller S, Roh K-H, Laurent C, Dupré L, Valitutti S (2013) An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse. Proc Natl Acad Sci 110:6073–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327

    Article  CAS  PubMed  Google Scholar 

  • Bisel B et al (2008) ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J Cell Biol 182:837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J: Cell Mol Biol 15:441–447

    Article  CAS  Google Scholar 

  • Boisvieux-Ulrich E, Laine MC, Sandoz D (1987) In vitro effects of benzodiazepines on ciliogenesis in the quail oviduct. Cell Motil Cytoskeleton 8:333–344

    Article  CAS  PubMed  Google Scholar 

  • Boisvieux-Ulrich E, Laine MC, Sandoz D (1989) In vitro effects of colchicine and nocodazole on ciliogenesis in quail oviduct. Biol Cell 67:67–79

    Article  CAS  PubMed  Google Scholar 

  • Boisvieux-Ulrich E, Laine M, Sandoz D (1990) Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium. Cell Tissue Res 259:443–454

    Article  CAS  PubMed  Google Scholar 

  • Bonne G et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288. doi:10.1038/6799

    Article  CAS  PubMed  Google Scholar 

  • Brown ACN et al (2011) Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol 9, e1001152. doi:10.1371/journal.pbio.1001152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burakov AV, Nadezhdina ES (2013) Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 37:95–104

    Article  CAS  PubMed  Google Scholar 

  • Burakov A, Nadezhdina E, Slepchenko B, Rodionov V (2003) Centrosome positioning in interphase cells. J Cell Biol 162:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Poüs C (2001) The Golgi complex is a microtubule-organizing organelle Molecular Biology of the Cell 12:2047–2060

  • Chang W, Antoku S, Östlund C, Worman HJ, Gundersen GG (2015) Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts. Nucleus 6:77–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chemin K, Bohineust A, Dogniaux S, Tourret M, Guégan S, Miro F, Hivroz C (2012) Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol 189:2159–2168

    Article  CAS  PubMed  Google Scholar 

  • Coan DE, Wechezak AR, Viggers RF, Sauvage LR (1993) Effect of shear stress upon localization of the Golgi apparatus and microtubule organizing center in isolated cultured endothelial cells. J Cell Sci 104:1145–1153

    PubMed  Google Scholar 

  • Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7:631–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur ELF, Kuhn J, Poenie M (2006) Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci 103:14883–14888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corthesy-Theulaz I, Pauloin A, Pfeffer SR (1992) Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol 118:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Cowan CR, Hyman AA (2007) Acto-myosin reorganization and PAR polarity in C-elegans. Development 134:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Dawe HR, Farr H, Gull K (2007) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120:7–15

    Article  CAS  PubMed  Google Scholar 

  • Dawe HR et al (2009) Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 122:2716–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai RA, Gao L, Raghavan S, Liu WF, Chen CS (2009) Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122:905–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirksen ER (1971) Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. J Cell Biol 51:286–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distel M, Hocking JC, Volkmann K, Koster RW (2010) The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol 191:875–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci U S A 98:11943–11948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163:1205–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin I, Sakamoto Y, Etienne-Manneville S (2011) Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J Cell Sci 124:865–872

    Article  CAS  PubMed  Google Scholar 

  • Efimov A et al (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi. Network Develop Cell 12:917–930

    Article  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3[beta] and adenomatous polyposis coli to control cell polarity. Nature 421:753–756

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Manneville J-B, Nicholls S, Ferenczi MA, Hall A (2005) Cdc42 and Par6–PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170:895–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Euteneuer U, Schliwa M (1992) Mechanism of centrosome positioning during the wound response in BSC-1 cells. J Cell Biol 116:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Fan SL et al (2004) Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol 14:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Feiguin F, Ferreira A, Kosik KS, Caceres A (1994) Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 127:1021–1039

    Article  CAS  PubMed  Google Scholar 

  • Feldman JL, Geimer S, Marshall WF (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5, e149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filbert EL, Le Borgne M, Lin J, Heuser JE, Shaw AS (2012) Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells. J Immunol 188:5421–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gakovic M, Shu X, Kasioulis I, Carpanini S, Moraga I, Wright AF (2011) The role of RPGR in cilia formation and actin stability. Hum Mol Genet 20:4840–4850

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Rosen D, Berke G (1982) Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol 95:137–143

    Article  CAS  PubMed  Google Scholar 

  • Ghossoub R, Molla-Herman A, Bastin P, Benmerah A (2011) The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 103:131–144

    Article  PubMed  Google Scholar 

  • Goetz SC, Liem KF Jr, Anderson KV (2012) The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151:847–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein B, Hird SN (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122:1467–1474

    CAS  PubMed  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463

    Article  CAS  PubMed  Google Scholar 

  • Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau Daniel D (2007) Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse Immunity 26:177–190

  • Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627

    Article  CAS  PubMed  Google Scholar 

  • Gotlieb AI, May LM, Subrahmanyan L, Kalnins VI (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol 91:589–594

    Article  CAS  PubMed  Google Scholar 

  • Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M (2005) Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci U S A 102:4359–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray RS et al (2009) The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 11:1225–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths GM, Tsun A, Stinchcombe JC (2010) The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 189:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudima GO, Vorobjev IA, Chentsov YS (1988) Centriolar location during blood cell spreading and motion in vitro: an ultrastructural analysis. J Cell Sci 89:225–241

    PubMed  Google Scholar 

  • Gundersen GG, Worman HJ (2013) Nuclear positioning. Cell 152:1376–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyoeva FK, Bybikova EM, Minin AA (2000) An isoform of kinesin light chain specific for the Golgi complex. J Cell Sci 113(Pt 11):2047–2054

    CAS  PubMed  Google Scholar 

  • Hagan I, Yanagida M (1995) The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129:1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara H, Harada S, Maeda S, Aoki T, Ohwada N, Takata K (2002) Ultrastructural and immunohistochemical study of the basal apparatus of solitary cilia in the human oviduct epithelium. J Anat 200:89–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque F et al (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26:3738–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S (2010) Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 285:3487–3498

    Article  CAS  PubMed  Google Scholar 

  • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto-Tane A, Yokosuka T, Sakata-Sogawa K, Sakuma M, Ishihara C, Tokunaga M, Saito T (2011) Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation Immunity 34:919–931

  • Heidemann SR, Kirschner MW (1975) Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol 67:105–117

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez V, Pravincumar P, Diaz-Font A, May-Simera H, Jenkins D, Knight M, Beales PL (2013) Bardet-Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hum Mol Genet 22:3858–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higginbotham H, Tanaka T, Brinkman BC, Gleeson JG (2006) GSK3β and PKCζ function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol Cell Neurosci 32:118–132

    Article  CAS  PubMed  Google Scholar 

  • Ho WC, Allan VJ, van Meer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48:250–263

    CAS  PubMed  Google Scholar 

  • Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD (2004) Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem 279:25805–25812

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Kim J, Kim J (2015) Myosin heavy chain 10 (MYH10) is required for centriole migration during the biogenesis of primary cilia. Biochem Biophys Res Commun 461:180–185

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Roberts Anthony J, Leschziner Andres E, Reck-Peterson Samara L (2012) Lis1 acts as a “Clutch” between the ATPase and microtubule-binding domains of the dynein motor cell 150:975–986

  • Huse M, Le Floc'h A, Liu X (2013) From lipid second messengers to molecular motors: microtubule-organizing center reorientation in T cells. Immunol Rev 256:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins MR, Tsun A, Stinchcombe JC, Griffiths GM (2009) The strength of T cell receptor signal controls the polarization of cytotoxic machinery to the immunological synapse immunity 31:621–631

  • Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28:101–110

    Article  CAS  PubMed  Google Scholar 

  • Johnson KJ, Hall ES, Boekelheide K (1996) Kinesin localizes to the trans-Golgi network regardless of microtubule organization. Eur J Cell Biol 69:276–287

    CAS  PubMed  Google Scholar 

  • Kalnins VI, Chung CK, Turnbull C (1972) Procentrioles in ciliating and ciliated cells of chick trachea. Z Zellforsch Mikrosk Anat 135:461–471

    Article  CAS  PubMed  Google Scholar 

  • Kanwar N, Wilkins JA (2011) IQGAP1 involvement in MTOC and granule polarization in NK-cell cytotoxicity. Eur J Immunol 41:2763–2773

    Article  CAS  PubMed  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52:311–320

    Article  CAS  PubMed  Google Scholar 

  • Kim J et al (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J et al (2015) Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun 6, 6781

    Article  PubMed  CAS  Google Scholar 

  • Klotz C, Bordes N, Laine MC, Sandoz D, Bornens M (1986) Myosin at the apical pole of ciliated epithelial cells as revealed by a monoclonal antibody. J Cell Biol 103:613–619

    Article  CAS  PubMed  Google Scholar 

  • Klotz C, Dabauvalle MC, Paintrand M, Weber T, Bornens M, Karsenti E (1990) Parthenogenesis in Xenopus eggs requires centrosomal integrity. J Cell Biol 110:405–415

    Article  CAS  PubMed  Google Scholar 

  • Kochanski RS, Borisy GG (1990) Mode of centriole duplication and distribution. J Cell Biol 110:1599–1605

    Article  CAS  PubMed  Google Scholar 

  • Kodani A, Sütterlin C (2008) The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell 19:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondylis V, Rabouille C (2009) The Golgi apparatus: lessons from Drosophila. FEBS Lett 583:3827–3838

    Article  CAS  PubMed  Google Scholar 

  • Kuhn JR, Poenie M (2002) Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing immunity 16:111–121

  • Kuhné MR et al (2003) Linker for activation of T cells, ζ-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J Immunol 171:860–866

    Article  PubMed  Google Scholar 

  • Kunda P, Baum B (2009) The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 19:174–179

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A, Dennert G (1984) Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J Immunol 133:2762–2766

    CAS  PubMed  Google Scholar 

  • Kupfer A, Dennert G, Singer SJ (1983) Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc Natl Acad Sci 80:7224–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupfer A, Dennert G, Singer SJ (1985) The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J Mol Cell Immunology: JMCI 2:37–49

    CAS  PubMed  Google Scholar 

  • Kupfer A, Swain SL, Janeway CA, Singer SJ (1986) The specific direct interaction of helper T cells and antigen-presenting B cells. Proc Natl Acad Sci 83:6080–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei K et al (2009) SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci U S A 106:10207–10212

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemullois M, Klotz C, Sandoz D (1987) Immunocytochemical localization of myosin during ciliogenesis of quail oviduct. Eur J Cell Biol 43:429–437

    CAS  PubMed  Google Scholar 

  • Lemullois M, Boisvieux-Ulrich E, Laine MC, Chailley B, Sandoz D (1988) Development and functions of the cytoskeleton during ciliogenesis in metazoa. Biol Cell 63:195–208

    Article  CAS  PubMed  Google Scholar 

  • Li P, Meinke P, Huong LTT, Wehnert M, Noegel AA (2014) Contribution of SUN1 mutations to the pathomechanism in muscular dystrophies. Hum Mutat 35:452–461

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Yu W, Li Y, Yang Z, Yan X, Huang Q, Zhu X (2004) Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. J Cell Biol 164:557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 100:5286–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kapoor TM, Chen JK, Huse M (2013) Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc Natl Acad Sci 110:11976–11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, Lammerding J (2011) The interaction between Nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 286:26743–26753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludford-Menting MJ et al. (2005) A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation Immunity 22:737–748

  • Lui-Roberts WWY, Stinchcombe JC, Ritter AT, Akhmanova A, Karakesisoglou I, Griffiths GM (2012) Cytotoxic T lymphocyte effector function is independent of nucleus–centrosome dissociation. Eur J Immunol 42:2132–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luxton GWG, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement Science 329:956–959

  • Magdalena J, Millard TH, Machesky LM (2003) Microtubule involvement in NIH 3T3 Golgi and MTOC polarity establishment. J Cell Sci 116:743–756

    Article  CAS  PubMed  Google Scholar 

  • Malone CJ, Fixsen WD, Horvitz HR, Han M (1999) UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126:3171–3181

    CAS  PubMed  Google Scholar 

  • Manneville J-B, Jehanno M, Etienne-Manneville S (2010) Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J Cell Biol 191:585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks DL, Larkin JM, McNiven MA (1994) Association of kinesin with the Golgi apparatus in rat hepatocytes. J Cell Sci 107(Pt 9):2417–2426

    CAS  PubMed  Google Scholar 

  • Martín-Cófreces NB et al (2006) Role of Fyn in the rearrangement of tubulin cytoskeleton induced through TCR. J Immunol 176:4201–4207

    Article  PubMed  Google Scholar 

  • Martín-Cófreces NB et al (2008) MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol 182:951–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGee MD, Rillo R, Anderson AS, Starr DA (2006) UNC-83 Is a KASH protein required for nuclear migration and is recruited to the outer nuclear membrane by a physical interaction with the SUN protein UNC-84. Mol Biol Cell 17:1790–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11:1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mislow JM, Kim MS, Davis DB, McNally EM (2002) Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 115:61–70

    CAS  PubMed  Google Scholar 

  • Nadezhdina ES, Fais D, Chentsov YS (1979) On the association of centrioles with the interphase nucleus. Eur J Cell Biol 19:109–115

    CAS  PubMed  Google Scholar 

  • Nagano A et al (1996) Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 12:254–259

    Article  CAS  PubMed  Google Scholar 

  • Osmani N, Vitale N, Borg J-P, Etienne-Manneville S (2006) Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Current Biology 16:2395–2405

  • Osmani N, Peglion F, Chavrier P, Etienne-Manneville S (2010) Cdc42 localization and cell polarity depend on membrane traffic. J Cell Biol 191:1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paintrand M, Moudjou M, Delacroix H, Bornens M (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108:107–128

    Article  CAS  PubMed  Google Scholar 

  • Palazzo AF, Cook TA, Alberts AS, Gundersen GG (2001a) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3:723–729

    Article  CAS  PubMed  Google Scholar 

  • Palazzo AF et al (2001b) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541

    Article  CAS  PubMed  Google Scholar 

  • Pan J, You Y, Huang T, Brody SL (2007) RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J Cell Sci 120:1868–1876

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Haigo SL, Wallingford JB (2006) Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet 38:303–311

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB (2008) Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40:871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavelka M, Ellinger A (1983) Effect of colchicine on the Golgi complex of rat pancreatic acinar cells. J Cell Biol 97:737–748

    Article  CAS  PubMed  Google Scholar 

  • Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG (2007) The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17:1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Pitaval A, Tseng Q, Bornens M, Thery M (2010) Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 191:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puckelwartz MJ et al (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620

    Article  CAS  PubMed  Google Scholar 

  • Quann EJ, Merino E, Furuta T, Huse M (2009) Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 10:627–635

    Article  CAS  PubMed  Google Scholar 

  • Quann EJ, Liu X, Altan-Bonnet G, Huse M (2011) A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat Immunol 12:647–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raff JW, Glover DM (1988) Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J Cell Biol 107:2009–2019

    Article  CAS  PubMed  Google Scholar 

  • Rak GD, Mace EM, Banerjee PP, Svitkina T, Orange JS (2011) Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol 9, e1001151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravanelli AM, Klingensmith J (2011) The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Dev Biol 350:101–111

    Article  CAS  PubMed  Google Scholar 

  • Rios RM, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15:60–66

    Article  CAS  PubMed  Google Scholar 

  • Rogalski AA, Singer SJ (1984) Associations of elements of the Golgi apparatus with microtubules. J Cell Biol 99:1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Roghi C, Allan VJ (1999) Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J Cell Sci 112(Pt 24):4673–4685

    CAS  PubMed  Google Scholar 

  • Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    Article  CAS  PubMed  Google Scholar 

  • Sahlender DA et al (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sameshima M, Imai Y, Hashimoto Y (1988) The position of the microtubule-organizing center relative to the nucleus is independent of the direction of cell migration in Dictyostelium discoideum. Cell Motil Cytoskeleton 9:111–116

    Article  CAS  PubMed  Google Scholar 

  • Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG (2009) Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 19:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  CAS  PubMed  Google Scholar 

  • Schütze K, Maniotis A, Schliwa M (1991) The position of the microtubule-organizing center in directionally migrating fibroblasts depends on the nature of the substratum. Proc Natl Acad Sci 88:8367–8371

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrador JM, Cabrero JR, Sancho D, Mittelbrunn Ma, Urzainqui A, Sánchez-Madrid F (2004) HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization immunity 20:417–428

  • Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK (2011) Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 22:806–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitaram P, Anderson MA, Jodoin JN, Lee E, Lee LA (2012) Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis. Development 139:2945–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluder G, Lewis K (1987) Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs. J Experimental Zoology 244:89–100

    Article  CAS  Google Scholar 

  • Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME (2004) Par6[alpha] signaling controls glial-guided neuronal migration. Nat Neurosci 7:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Solecki DJ, Trivedi N, Govek E-E, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided. Neuronal Migration Neuron 63:63–80

    Article  CAS  PubMed  Google Scholar 

  • Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15:363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207–230

    CAS  PubMed  Google Scholar 

  • Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 122:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409

    Article  CAS  PubMed  Google Scholar 

  • Stauber T, Simpson JC, Pepperkok R, Vernos I (2006) A role for Kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 16:2245–2251

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465

    Article  CAS  PubMed  Google Scholar 

  • Stowers L, Yelon D, Berg LJ, Chant J (1995) Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci 92:5027–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S (1998) Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125:3607–3614

    CAS  PubMed  Google Scholar 

  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG (2004) Lis1 and double cortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taranum S et al (2012) LINC complex alterations in DMD and EDMD/CMT fibroblasts. Eur J Cell Biol 91:614–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246:263–279

    Article  CAS  PubMed  Google Scholar 

  • Tsai J-W, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10:970–979

    Article  CAS  PubMed  Google Scholar 

  • Tsang WY, Dynlacht BD (2008) sSgo1, a guardian of centriole cohesion. Dev Cell 14:320–322

    Article  CAS  PubMed  Google Scholar 

  • Tsun A et al (2011) Centrosome docking at the immunological synapse is controlled by Lck signaling. J Cell Biol 192:663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci U S A 104:16182–16187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76:9–17

    Article  CAS  PubMed  Google Scholar 

  • Valente EM et al (2010) Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 42:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente-Manzanares M, Zareno J, Whitmore L, Choi CK, Horwitz AF (2007) Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol 176:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorobjev IA, Nadezhdina ES (1987) The centrosome and its role in the organization of microtubules. Int Rev Cytol 106:227–293

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N et al (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. doi:10.1093/emboj/16.11.3044

    Google Scholar 

  • Watanabe T et al. (2004) Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration developmental cell 7:871–883

  • Wehland J, Henkart M, Klausner R, Sandoval IV (1983) Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci U S A 80:4286–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92:547–557

  • Werner ME, Ward HH, Phillips CL, Miller C, Gattone VH, Bacallao RL (2013) Inversin modulates the cortical actin network during mitosis. Am J Physiology Cell Physiology 305:C36–47

    Article  CAS  PubMed  Google Scholar 

  • Wheway G, Abdelhamed Z, Natarajan S, Toomes C, Inglehearn C, Johnson CA (2013) Aberrant Wnt signalling and cellular over-proliferation in a novel mouse model of Meckel-Gruber syndrome. Dev Biol 377:55–66

    Article  CAS  PubMed  Google Scholar 

  • Wheway G et al. (2015) An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes Nat Cell Biol

  • Wiedemann A, Depoil D, Faroudi M, Valitutti S (2006) Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc Natl Acad Sci U S A 103:10985–10990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelmsen K, Ketema M, Truong H, Sonnenberg A (2006) KASH-domain proteins in nuclear migration, anchorage and other processes. J Cell Sci 119:5021–5029

    Article  CAS  PubMed  Google Scholar 

  • Yamana N et al (2006) The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol Cell Biol 26:6844–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Zhu X (2013) Branched F-actin as a negative regulator of cilia formation. Exp Cell Res 319:147–151

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Zeng H, Ning G, Reiter JF, Liu A (2014) C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc Natl Acad Sci U S A 111:2164–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA (2013) Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Cell Biol 202:779–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y et al (2009) The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 136:655–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q et al (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498

    CAS  PubMed  Google Scholar 

  • Zhang Q et al (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222

    CAS  PubMed  Google Scholar 

  • Zyss D, Ebrahimi H, Gergely F (2011) Casein kinase I delta controls centrosome positioning during T cell activation. J Cell Biol 195:781–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Helen Thompson and Karen Renzaglia for providing some of the TEM images and Jack Chen for assistance with the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen R. Dawe.

Additional information

Handling Editor: David Robinson

Amy R. Barker and Kate V. McIntosh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker, A.R., McIntosh, K.V. & Dawe, H.R. Centrosome positioning in non-dividing cells. Protoplasma 253, 1007–1021 (2016). https://doi.org/10.1007/s00709-015-0883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0883-5

Keywords

Navigation