Skip to main content

Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence

Abstract

Mediator is a conserved multi-protein complex that acts as a bridge between promoter-bound transcriptional regulators and RNA polymerase II. While redox signaling is important in adjusting plant metabolism and development, the involvement of Mediator in redox homeostasis and regulation only recently started to emerge. Our previous results show that the MED10a, MED28, and MED32 Mediator subunits form various types of covalent oligomers linked by intermolecular disulfide bonds in vitro. To link that with biological significance we have characterized Arabidopsis med32 and med28 mutants and found that they are affected in root development and senescence, phenotypes possibly associated to redox changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Autran D, Jonak C, Belcram K, Beemster GT, Kronenberger J, Grandjean O, Inzé D, Traas J (2002) Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21:6036–6049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26:717–729

    Article  PubMed  Google Scholar 

  • Björklund S, Gustafsson CM (2005) The yeast Mediator complex and its regulation. Trends Biochem Sci 30:240–244

    Article  PubMed  Google Scholar 

  • Bonawitz ND, Soltau WL, Blatchley MR, Powers BL, Hurlock AK, Seals LA, Weng JK, Stout J, Chapple C (2012) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem 287:5434–5445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110:143–151

    CAS  Article  PubMed  Google Scholar 

  • Bourbon HM (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36:3993–4008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cao S, Jiang S, Zhang R (2006) Evidence for a role of Ethylene-Insensitive 2 gene in the regulation of the oxidative stress response in Arabidopsis. Acta Physiol Plant 28:417–425

    CAS  Article  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    CAS  Article  PubMed  Google Scholar 

  • Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885

    CAS  Article  PubMed  Google Scholar 

  • Cevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) Mediator25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chen GH, Liu CP, Chen SCG, Wang LC (2011) Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. J Exp Bot 62:1–18

  • Dotson MR, Yuan CX, Roeder RG, Myers LC, Gustafsson CM, Jiang YW, Li Y, Kornberg RD, Asturias FJ (2000) Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A 97:14307–14310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    CAS  Article  PubMed  Google Scholar 

  • Elfving N, Davoine C, Benlloch R, Blomberg J, Brännström K, Müller D, Nilsson A, Ulfstedt M, Ronne H, Wingsle G, Nilsson O, Björklund S (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci U S A 108:8245–8250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    CAS  Article  PubMed  Google Scholar 

  • Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA et al (2010) The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development 137:113–122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FC, Werner M (2004) A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 32:5379–5391

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ito J, Sono T, Tasaka M, Furutani M (2011) MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. Plant Cell Physiol 52:539–552

    CAS  Article  PubMed  Google Scholar 

  • Jiang J, Su M, Wang L, Jiao C, Sun Z, Cheng W, Li F, Wang C (2012) Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination. Plant Physiol Biochem 53:84–93

    CAS  Article  PubMed  Google Scholar 

  • Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stuhler K, Meyer HE, Sturre MJ, Hille J, Warscheid B, Dijkwel PP (2008) Early leaf senescence is associated with an altered cellular redox balance in cpr5/old1 mutants. Plant Biol 1:85–98

  • John CF, Morris K, Jordan BR, Thomas B, A-H-Mackerness S (2001) Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. J Exp Bot 52:1367–1373

    CAS  Article  PubMed  Google Scholar 

  • Kang JS, Kim SH, Hwang MS, Han SJ, Lee YC, Kim YJ (2001) The structural and functional organization of the yeast mediator complex. J Biol Chem 276:42003–42010

    CAS  Article  PubMed  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K (2011) Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 22:741–748

    CAS  Article  PubMed  Google Scholar 

  • Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608

    CAS  Article  PubMed  Google Scholar 

  • Klose C, Buche C, Fernandez AP, Schafer E, Zwick E, Kretsch T (2012) The Mediator complex subunit PFT1 interferes with COP1 and HY5 in the regulation of Arabidopsis light-signaling. Plant Physiol 160:289–307

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30:235–239

    CAS  Article  PubMed  Google Scholar 

  • Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY, Yun JD, Mengiste T (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5:3064

    Article  PubMed  Google Scholar 

  • Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y (2010) Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845–3863

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mathur S, Vyas S, Kapoor S, Tyagi AK (2011) The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol 157:1609–1627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Meyer Y, Belini C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 7:1124–1160

    Article  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulates NPR1 function through redox changes. Cell 113:935–944

    CAS  Article  PubMed  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    CAS  Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Article  Google Scholar 

  • Rouhier N (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    CAS  Article  PubMed  Google Scholar 

  • Shaikhali J, Davoine C, Brännström K, Rouhier N, Bygdell J, Björklund S, Wingsle G (2015) Biochemical and redox characterization of the Mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein. Biochem J 468:385–400. doi:10.1042/BJ20150132

    CAS  Article  PubMed  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101:8827–8832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Šimonovicová M, Huttova J, Mistrík I, Široká B, Tamas L (2004) Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul 44:267–275

    Article  Google Scholar 

  • Sundaravelpandian K, Chandrika NN, Schmidt W (2013) PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol 197:151–161

    CAS  Article  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    CAS  Article  PubMed  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    CAS  Article  PubMed  Google Scholar 

  • Vanacke H, Sandalio LM, Jime A, Palma JM, Corpas FJ, Meseguer V, Gómez M, Sevilla F, Leterrier M, Foyer CH, del Rio LA (2006) Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J Exp Bot 57:1735–1745

    Article  Google Scholar 

  • Vogelmann K, Drechsel G, Bergler J, Subert C, Philippar K, Soll J, Engelmann JC, Engelsdorf T, Voll LM, Hoth S (2012) Early senescence and cell death in Arabidopsis saul1 mutants Involves the PAD4-dependent salicylic acid pathway. Plant Physiol 159:1477–1487

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932

    CAS  Article  PubMed  Google Scholar 

  • Xu R, Li Y (2011) Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana. Development 138:4545–4554

    CAS  Article  PubMed  Google Scholar 

  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012) The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24:4294–309

  • Zhang X, Yao J, Zhang Y, Sun Y, Mou Z (2013) The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J 75:484–497

    CAS  Article  PubMed  Google Scholar 

  • Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG (2013) Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLoS One 8:e53924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Kemp foundation (GW, SB), Tryggers foundation (GW), the Berzelii Center (GW), the Swedish Cancer Society (SB), and the Swedish Research Council (SB).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jehad Shaikhali or Gunnar Wingsle.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikhali, J., Davoine, C., Björklund, S. et al. Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence. Protoplasma 253, 957–963 (2016). https://doi.org/10.1007/s00709-015-0853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0853-y

Keywords

  • Mediator
  • Redox
  • Senescence
  • Root development
  • Oligomerization