, Volume 253, Issue 2, pp 487–501 | Cite as

Toward establishing a morphological and ultrastructural characterization of proembryogenic masses and early somatic embryos of Araucaria angustifolia (Bert.) O. Kuntze

  • Neusa Steiner
  • Francine L. Farias-Soares
  • Éder C. Schmidt
  • Maria L. T. Pereira
  • Bruna Scheid
  • Gladys D. Rogge-Renner
  • Zenilda L. Bouzon
  • Daniela Schmidt
  • Sara Maldonado
  • Miguel P. Guerra
Original Article


Somatic embryogenesis is a morphogenetic route useful for the study of embryonic development, as well as the large-scale propagation of endangered species, such as the Brazilian pine (Araucaria angustifolia). In the present study, we investigated the morphological and ultrastructural organization of A. angustifolia somatic embryo development by means of optical and electron microscopy. The proembryogenic stage was characterized by the proliferation of proembryogenic masses (PEMs), which are cellular aggregates composed of embryogenic cells (ECs) attached to suspensor-like cells (SCs). PEMs proliferate through three developmental stages, PEM I, II, and III, by changes in the number of ECs and SCs. PEM III-to-early somatic embryo (SE) transition was characterized by compact clusters of ECs growing out of PEM III, albeit still connected to it by SCs. Early SEs showed a dense globular embryonic mass (EM) and suspensor region (SR) connected by embryonic tube cells (TCs). By comparison, early somatic and zygotic embryos showed similar morphology. ECs are round with a large nucleus, nucleoli, and many cytoplasmic organelles. In contrast, TCs and SCs are elongated and vacuolated with cellular dismantling which is associated with programmed cell death of SCs. Abundant starch grains were observed in the TCs and SCs, while proteins were more abundant in the ECs. Based on the results of this study, a fate map of SE development in A. angustifolia is, for the first time, proposed. Additionally, this study shows the cell biology of SE development of this primitive gymnosperm which may be useful in evolutionary studies in this area.


Somatic embryogenesis Histochemistry Pluripotency Suspensor cell Conifers 



Abscisic acid


Cytochemical analysis


Coomassie Brilliant Blue


Confocal laser scanning microscopy


4′,6-Diamidino-2-phenylindole dihydrochloride


Embryogenic cells


Embryonic mass




Light microscopy


Periodic acid-Schiff


Programmed cell death


Polyethylene glycol 3350


Proembryogenic mass


Proembryogenic masses


Plant growth regulators


Suspensor-like cells


Suspensor region


Somatic embryo


Scanning electron microscopy


Toluidine blue


Embryonic tube cells


Transmission electron microscopy



The authors acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME) of the Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil. This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and the Fundação de Apoio à Pesquisa Cientifica e Inovação Tecnológica do Estado de Santa Catarina (FAPESC).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abrahamsson M, Valadares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tissue Organ Cult 109:391–400CrossRefGoogle Scholar
  2. Astarita LV, Guerra MP (1998) Early somatic embryogenesis in Araucaria angustifolia —induction and maintenance of embryonal-suspensor mass cultures. Braz J Plant Physiol 10:113–118Google Scholar
  3. Baker CN, Banerjee SN, Tenover FC (1994) Evaluation of alamar colorimetric MIC method for antimicrobial susceptibility testing of gram-negative bacteria. J Clin Microbiol 32:1261–1267PubMedPubMedCentralGoogle Scholar
  4. Balbuena TS, Silveira V, Junqueira M, Dias LLC, Santa-Catarina C, Shevchenko A, Floh EIS (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in Brazilian Pine (Araucaria angustifolia). J Proteome 72:337–352CrossRefGoogle Scholar
  5. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509Google Scholar
  6. Dogra PD (1978) Morphology, development and nomenclature of conifer embryo. Phytomorphology 28:307–322Google Scholar
  7. Domínguez F, Cejudo FJ (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci 197:114–121CrossRefPubMedGoogle Scholar
  8. Durzan DJ (2008) Monozygotic cleavage polyembryogenesis. Cytol Genet 42:159–173CrossRefGoogle Scholar
  9. Dutra NT, Silveira V, de Azevedo IG, Gomes-Neto LR, Façanha AR, Steiner N, Guerra MP, Floh EIS, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro- embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148:121–132CrossRefPubMedGoogle Scholar
  10. Elbl PM, Lira BS, Andrade SCS, Jo L, Santos ALW, Coutinho LL, Floh EIS, Rossi MM (2015) Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine Araucaria angustifolia (Bertol.) Kuntze. Plant Cell Tissue Organ Cult 120:903–915CrossRefGoogle Scholar
  11. Farias-Soares FL, Burrieza HP, Steiner N, Maldonado S, Guerra MP (2013) Immunoanalysis of dehydrins in Araucaria angustifolia embryos. Protoplasma 250:911–918CrossRefPubMedGoogle Scholar
  12. Farias-Soares FL, Steiner N, Schmidt EC, Pereira MLT, Rogge-Renner GD, Bouzon ZL, Floh EIS, Guerra MP (2014) The transition of proembryogenic masses to somatic embryos in Araucaria angustifolia (Bertol.) Kuntze is related to the endogenous contents of IAA, ABA and polyamines. Acta Physiol Plant 36:1853–1865CrossRefGoogle Scholar
  13. Filonova LH, Bozhkov PV, von Arnold S (2000a) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264CrossRefPubMedGoogle Scholar
  14. Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000b) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411PubMedGoogle Scholar
  15. Filonova LH, Von Arnold S, Daniel G, Bozhkov PV (2002) Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ 9:1057–1062CrossRefPubMedGoogle Scholar
  16. Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic, LondonGoogle Scholar
  17. Gärtner PJ, Nagl W (1980) Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells. Planta 149:341–349CrossRefPubMedGoogle Scholar
  18. Geburek T, Konrad H (2008) Why the conservation of forest genetic resources has not worked. Conserv Biol 22:267–274CrossRefPubMedGoogle Scholar
  19. Global Strategy for Plant Conservation. The targets 2011–2020 Accessed 01 Oct 2014
  20. Gordon EM, McCandless EL (1973) Ultrastructure and histochemistry of Chondrus crispus Stack. Proc Nova Scotian Inst Sci 27:111–133Google Scholar
  21. Grigová M, Kubeš M, Drážná N, Øezanka T, Lipavská H (2007) Storage lipid dynamics in somatic embryos of Norway spruce (Picea abies): histochemical and quantitative analyses. Tree Physiol 27:1533–1540CrossRefPubMedGoogle Scholar
  22. Guerra MP, Silveira V, Santos ALW, Astarita LV, Nodari RO (2000) Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Press, Dordrecht, pp 457–478CrossRefGoogle Scholar
  23. Guerra MP, Steiner N, Mantovani A, Nodari RO, Reis MS, dos Santos KL (2008) Evolução, ontogênese e diversidade genética em Araucaria angustifolia. In: Barbieri RL, Stumpf ERT (eds) Origem e evolução de plantas cultivadas. Embrapa Inf Tecnol, Brasilia, DF, pp 149–184Google Scholar
  24. Gupta PK, Durzan DJ (1987) Somatic embryos from protoplasts of loblolly pine proembryonal cells. Nat Biotechnol 5:710–712CrossRefGoogle Scholar
  25. Gupta PK, Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent 5:36–37Google Scholar
  26. Hayat MA (1978) Introduction to biological scanning electron microscopy. University Park Press, BaltimoreGoogle Scholar
  27. Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. The Plant Cell S303–S325Google Scholar
  28. Helmersson A, von Arnold S (2009) Embryogenic cultures of Juniperus communis; easy establishment and embryo maturation, limited germination. Plant Cell Tissue Organ Cult 96:211–217CrossRefGoogle Scholar
  29. Helmersson A, von Arnold S, Bozhkov PV (2008) The level of free intracellular zinc mediates programmed cell death/cell survival decisions in plant embryos. Plant Physiol 147:1159–1167CrossRefGoogle Scholar
  30. International Union of Conservation of Nature Red List of Threatened Species (2013) Accessed 02 Oct 2013
  31. Jaskowiak MA (2014) Reviews of science for science librarians: the conservation of endangered plants using micropropagation. Sci Technol Libr 33:1CrossRefGoogle Scholar
  32. Jo L, Dos Santos ALW, Bueno CA, Barbosa HR, Floh EIS (2013) Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol 34:94–104CrossRefPubMedGoogle Scholar
  33. Joy RW, Yeung EC, Kong L, Thorpe TA (1991) Development of white spruce somatic embryos: I. Storage product deposition. In Vitro Cell Dev Biol Plant 27:32–41CrossRefGoogle Scholar
  34. Khuri S, Shmoury MR, Baalbaki R, Maunder ME, Talhouk SN (2000) Conservation of the Cedrus libani populations in Lebanon: history, current status and experimental application of somatic embryogenesis. Biodivers Conserv 9:1261–1273CrossRefGoogle Scholar
  35. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):1–100Google Scholar
  36. Kurata T, Okada K, Wada T (2005) Intercellular movement of transcription factors. Curr Opin Plant Biol 8:600–605CrossRefPubMedGoogle Scholar
  37. Larsson E, Sitbon F, Ljung K, von Arnold S (2008a) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177:356–366PubMedGoogle Scholar
  38. Larsson E, Sitbon F, von Arnold S (2008b) Polar auxin transport controls suspensor fate. Plant Signal Behav 3:469–470CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration, and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol Plant 48:324–334CrossRefGoogle Scholar
  40. Maruyama E, Hosoi Y, Ishii K (2007) Somatic embryogenesis and plant regeneration in yakutanegoyou, Pinus armandii Franch. var. amamiana (koidz) Hatusima, an endemic and endangered species in Japan. In Vitro Cell Dev Biol Plant 43:28–34CrossRefGoogle Scholar
  41. Nagl W (1977) ‘Plastolysomes’—plastids involved in the autolysis of the embryo-suspensor in Phaseolus. Z Pflanzenphysiol 85:45–51CrossRefGoogle Scholar
  42. Ouriques LC, Bouzon ZL (2008) Organização estrutural e ultra-estrutural das células vegetativas e da estrutura plurilocular de Hincksia mitchelliae (Harvey) P C Silva (Ectocarpales, Phaeophyceae). Rodriguesia 59:435–447Google Scholar
  43. Pullman GS, Bucalo K (2011) Pine somatic embryogenesis using zygotic embryos as explants. Methods Mol Biol 710:267–291CrossRefPubMedGoogle Scholar
  44. Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758PubMedGoogle Scholar
  45. Rogge-Renner GD, Steiner N, Schmidt EC, Bouzon ZL, Farias FL, Guerra MP (2013) Structural and component characterization of meristem cells in Araucaria angustifolia (Bert.) O. Kuntze zygotic embryo. Protoplasma 250:731–739CrossRefPubMedGoogle Scholar
  46. Santa-Catarina C, Silveira V, Steiner N, Guerra MP, Floh EIS, dos Santos ALW (2013) The use of somatic embryogenesis for mass clonal propagation and biochemical and physiological studies in woody plants. Curr Top Plant Biol 13:103–119Google Scholar
  47. Santos ALW, Silveira V, Steiner N, Vidor M, Guerra MP (2002) Somatic embryogenesis in Paraná Pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz Arch Biol Technol 45:97–106CrossRefGoogle Scholar
  48. Schlögl PS, dos Santos ALW, do Nascimento Vieira L, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tissue Organ Cult 108:173–180CrossRefGoogle Scholar
  49. Schmidt EC, dos Santos R, Horta PA, Maraschin M, Bouzon ZL (2010) Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): changes in cell organization, growth and photosynthetic performance. Micron 41:919–930CrossRefPubMedGoogle Scholar
  50. Schmidt EC, Pereira B, Pontes CLM, Santos R, Scherner F, Horta PA, Paula MR, Latini A, Maraschin M, Bouzon ZL (2012) Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales). Protoplasma 249:353–367CrossRefPubMedGoogle Scholar
  51. Silveira V, Steiner N, Santos ALW, Nodari RO, Guerra MP (2002) Biotechnology tools in Araucaria angustifolia conservation and improvement: inductive factors affecting somatic embryogenesis. Crop Breed Appl Biotechnol 2:463–470CrossRefGoogle Scholar
  52. Singh H (1978) Embryology of gymnosperms. In: Zimmerman W, Carlquist Z, Ozenda P, Wulff HD (eds) Handbuch der Pflanzen anatomie. Stuttgart, Berlin, pp 187–241Google Scholar
  53. Smertenko AP, Bozhkov PV, Filonova LF, Von Arnold S, Hussey PJ (2003) Re-organization of the cytoeskeleton during developmental programmed cell death in Picea abies embryos. Plant J 33:813–824CrossRefPubMedGoogle Scholar
  54. Souter M, Lindsey K (2000) Polarity and signaling in plant embryogenesis. J Exp Bot 51:971–983CrossRefPubMedGoogle Scholar
  55. Spurr AR (1969) A low viscosity epoxy resin-embedding medium for electron microscopy. J Ultrastruct Res 26:31–43CrossRefPubMedGoogle Scholar
  56. Stefenon VM, Steiner N, Guerra MP, Nodari RO (2009) Integrating approaches towards the conservation of forest genetic resources: a case study of Araucaria angustifolia. Biodivers Conserv 18:2433–2448CrossRefGoogle Scholar
  57. Steiner N, Vieira FN, Maldonado S, Guerra MP (2005) Carbon source affects morphogenesis and histodifferentiation of A. angustifolia embryogenic cultures. Braz Arch Biol Technol 48:896–903CrossRefGoogle Scholar
  58. Steiner N, Santa-Catarina C, Silveira V, Floh EI, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62CrossRefGoogle Scholar
  59. Steiner N, Santa-Catarina C, Andrade JBR, Balbuena TS, Guerra MP, Handro W, Floh EIS, Silveira V (2008) Araucaria angustifolia biotechnology. Functional Plant Sci Biotechnol 2:20–28Google Scholar
  60. Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Organ Cult 109:41–50CrossRefGoogle Scholar
  61. Tereso S, Zoglauer K, Milhinhos A, Miguel A, Oliveira MM (2007) Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Tree Physiol 27:661–669CrossRefPubMedGoogle Scholar
  62. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriére N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18CrossRefGoogle Scholar
  63. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252CrossRefPubMedGoogle Scholar
  64. Vieira LN, Santa-Catarina C, Fraga HPF, Santos ALW, Steinmacher DA, Schlogl PS, Silveira V, Steiner N, Floh EIS, Guerra MP (2012) Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci 195:80–87CrossRefGoogle Scholar
  65. von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suárez MF, Bozhkov PV (eds). Plant embryogenesis methods in molecular biology. Humana, Totowa, NJ, 427:31–47Google Scholar
  66. von Arnold S, Sabala I, Bozkov P, Dyachok J, Filonova LH (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249CrossRefGoogle Scholar
  67. von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova LH, Hogberg KA, Ingouff M, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult 1:323–329CrossRefGoogle Scholar
  68. Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415:751–754CrossRefPubMedGoogle Scholar
  69. Williams CG (2009) Conifer reproductive biology. Springer, New York. doi: 10.1007/978-1-4020-9602-0 CrossRefGoogle Scholar
  70. Winkelmann T (2013) Recent advances in propagation of woody plants. Acta Horticult 990:375–382CrossRefGoogle Scholar
  71. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Netherlands, pp 205–247CrossRefGoogle Scholar
  72. Yeung EC, Stasolla C, Kong L (1998) Apical meristem formation during zygotic embryo development of white spruce. Can J Bot 76:751–761Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Neusa Steiner
    • 1
  • Francine L. Farias-Soares
    • 2
  • Éder C. Schmidt
    • 3
  • Maria L. T. Pereira
    • 4
  • Bruna Scheid
    • 4
  • Gladys D. Rogge-Renner
    • 3
    • 7
  • Zenilda L. Bouzon
    • 3
    • 5
  • Daniela Schmidt
    • 4
  • Sara Maldonado
    • 6
  • Miguel P. Guerra
    • 4
  1. 1.Plant Physiology Laboratory, Department of BotanyFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Graduate Program in Plant Genetic Resources, Department of Plant ScienceFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil
  4. 4.Laboratory of Plant Developmental Physiology and Genetics, Department of Plant ScienceFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Central Laboratory of Electron MicroscopyFederal University of Santa CatarinaFlorianópolisBrazil
  6. 6.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  7. 7.Department of Biological SciencesUniversity of Joinville RegionJoinvilleBrazil

Personalised recommendations