Skip to main content

Arabidopsis flower development—of protein complexes, targets, and transport

Abstract

Tremendous progress has been achieved over the past 25 years or more of research on the molecular mechanisms of floral organ identity, patterning, and development. While collections of floral homeotic mutants of Antirrhinum majus laid the foundation already at the beginning of the previous century, it was the genetic analysis of these mutants in A. majus and Arabidopsis thaliana that led to the development of the ABC model of floral organ identity more than 20 years ago. This intuitive model kick-started research focused on the genetic mechanisms regulating flower development, using mainly A. thaliana as a model plant. In recent years, interactions among floral homeotic proteins have been elucidated, and their direct and indirect target genes are known to a large extent. Here, we provide an overview over the advances in understanding the molecular mechanism orchestrating A. thaliana flower development. We focus on floral homeotic protein complexes, their target genes, evidence for their transport in floral primordia, and how these new results advance our view on the processes downstream of floral organ identity, such as organ boundary formation or floral organ patterning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alvarez-Buylla ER, García-Ponce B, Garay-Arroyo A (2006) Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot 57:3099–3107. doi:10.1093/jxb/erl081

    CAS  Article  PubMed  Google Scholar 

  2. Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG (2008) Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem Sci 33:220–229. doi:10.1016/j.tibs.2008.02.002

  3. Bayer E, Thomas C, Maule A (2008) Symplastic domains in the Arabidopsis shoot apical meristem correlate with PDLP1 expression patterns. Plant Signal Behav 3:853–855. doi:10.4161/psb.3.10.6020

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhat RA, Lahaye T, Panstruga R (2006) The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods 2:12. doi:10.1186/1746-4811-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blázquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  Google Scholar 

  6. Bouhidel K, Irish VF (1996) Cellular interactions mediated by the homeotic PISTILLATA gene determine cell fate in the Arabidopsis flower. Dev Biol 174:22–31. doi:10.1006/dbio.1996.0048

    CAS  Article  PubMed  Google Scholar 

  7. Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3:749–758. doi:10.1105/tpc.3.8.749

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bowman JL, Smyth DR, Meyerowitz EM (2012) The ABC model of flower development: then and now. Development 139:4095–4098. doi:10.1242/dev.083972

    CAS  Article  PubMed  Google Scholar 

  9. Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556. doi:10.1105/tpc.107.051797

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619. doi:10.1126/science.289.5479.617

    CAS  Article  PubMed  Google Scholar 

  11. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74. doi:10.1007/s00709-010-0252-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Carles CC, Choffnes-Inada D, Reville K, Lertpiriyapong K, Fletcher JC (2005) ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 132:897–911. doi:10.1242/dev.01642

    CAS  Article  PubMed  Google Scholar 

  13. Causier B, Davies B (2014) Flower development in the asterid lineage. Methods Mol Biol 1110:35–55. doi:10.1007/978-1-4614-9408-9_2

    Article  PubMed  Google Scholar 

  14. Chandler JW (2012) Floral meristem initiation and emergence in plants. Cell Mol Life Sci 69:3807–3818. doi:10.1007/s00018-012-0999-0

    CAS  Article  PubMed  Google Scholar 

  15. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025. doi:10.1126/science.1088060

  16. Chen H, Ahmad M, Rim Y, Lucas WJ, Kim J (2013) Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking. New Phytol 198:1250–1260. doi:10.1111/nph.12223

    CAS  Article  PubMed  Google Scholar 

  17. Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567–1575

    CAS  PubMed  Google Scholar 

  18. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. doi:10.1126/science.1141752

    CAS  Article  PubMed  Google Scholar 

  19. Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA 111:14619–14624. doi:10.1073/pnas.1406446111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. de Folter S, Angenent GC (2006) trans meets cis in MADS science. Trends Plant Sci 11:224–231. doi:10.1016/j.tplants.2006.03.008

  21. de Folter S, Immink RGH, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433. doi:10.1105/tpc.105.031831

  22. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. CurrBiol 14:1935–1940. doi:10.1016/j.cub.2004.10.028

    CAS  Article  Google Scholar 

  23. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379. doi:10.1093/emboj/18.19.5370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Ehlers K, GroßeWesterloh M (2013) Developmental control of plasmodesmata frequency, structure, and function. In: Sowiński P (ed) Sokołowska K. Symplasmic transport in vascular plants, Springer New York, pp 41–82. doi:10.1007/978-1-4614-7765-5_2

    Google Scholar 

  25. Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    CAS  Article  PubMed  Google Scholar 

  26. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914. doi:10.1126/science.283.5409.1911

    CAS  Article  PubMed  Google Scholar 

  27. Gallois J-L, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. In: Genes Dev 18(4):S. 375–380. doi:10.1101/gad.291204

  28. Goethe, JW von (1790) Versuch die Metamorphose der Pflanzen zu erklären. Ettinger, Gotha

  29. Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438. doi:10.1242/dev.01600

  30. Gregis V, Sessa A, Dorca-Fornell C, Kater MM (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J 60:626–637. doi:10.1111/j.1365-313X.2009.03985.x

    CAS  Article  PubMed  Google Scholar 

  31. Han X, Kumar D, Chen H, Wu S, Kim J (2014) Transcription factor-mediated cell-to-cell signalling in plants. J Exp Bot 65:1737–1749. doi:10.1093/jxb/ert422

    CAS  Article  PubMed  Google Scholar 

  32. Holt AL, van Haperen JMA, Groot EP, Laux T (2014) Signaling in shoot and flower meristems of Arabidopsis thaliana. Curr Opin Plant Biol 17:96–102. doi:10.1016/j.pbi.2013.11.011

    CAS  Article  PubMed  Google Scholar 

  33. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529. doi:10.1038/35054083

    CAS  Article  PubMed  Google Scholar 

  34. Hsu W, Yeh T, Huang K, Li J, Chen H, Yang C (2014) AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis. Plant J 77:1–15. doi:10.1111/tpj.12363

    CAS  Article  PubMed  Google Scholar 

  35. Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10:R24. doi:10.1186/gb-2009-10-2-r24

  36. Jenik PD, Irish VF (2001) The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development. Development 128:13–23

    CAS  PubMed  Google Scholar 

  37. Jetha K, Theißen G, Melzer R (2014) Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucl Acids Res 42:10927–10942. doi:10.1093/nar/gku755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090. doi:10.1371/journal.pbio.1000090

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89. doi:10.1126/science.1185244

    CAS  Article  PubMed  Google Scholar 

  40. Kim I, Kobayashi K, Cho E, Zambryski PC (2005a) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950. doi:10.1073/pnas.0505622102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kim J, Rim Y, Wang J, Jackson D (2005b) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793. doi:10.1101/gad.332805

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–3920. doi:10.1242/dev.048199

    CAS  Article  PubMed  Google Scholar 

  43. Lange M, Orashakova S, Lange S, Melzer R, Theißen G, Smyth DR, Becker A (2013) The seirena B class floral homeotic mutant of California Poppy (Eschscholziacalifornica) reveals a function of the enigmatic PI motif in the formation of specific multimeric MADS domain protein complexes. Plant Cell 25:438–453. doi:10.1105/tpc.112.105809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  45. Lenhard M, Bohnert A, Jürgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814. doi:10.1016/S0092-8674(01)00390-7

  46. Lifschitz E, Ayre BG, Eshed Y (2014) Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci 5:465. doi:10.3389/fpls.2014.00465

    Article  PubMed  PubMed Central  Google Scholar 

  47. Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu X, Kim YJ, Müller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654–3670. doi:10.1105/tpc.111.091538

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803. doi:10.1016/S0092-8674(01)00384-1

    CAS  Article  PubMed  Google Scholar 

  50. Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69. doi:10.1038/379066a0

    CAS  Article  PubMed  Google Scholar 

  51. Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983. doi:10.1126/science.270.5244.1980

    CAS  Article  PubMed  Google Scholar 

  52. Maier AT, Stehling-Sun S, Offenburger SL, Lohmann JU (2011) The bZIP transcription factor PERIANTHIA: A multifunctional hub for meristem control. Front Plant Sci 2:79. doi:10.3389/fpls.2011.00079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Mara CD, Irish VF (2008) Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol 147:707–718. doi:10.1104/pp.107.115634

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. McGonigle B, Bouhidel K, Irish VF (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10:1812–1821. doi:10.1101/gad.10.14.1812

    CAS  Article  PubMed  Google Scholar 

  55. Melzer R, Theißen G (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucl Acids Res 37:2723–2736. doi:10.1093/nar/gkp129

  56. Melzer R, Verelst W, Theißen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucl Acids Res 37:144–157. doi:10.1093/nar/gkn900

  57. Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540. doi:10.1126/science.274.5292.1537

    CAS  Article  PubMed  Google Scholar 

  58. Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein-protein interactions. Plant J 53:597–609. doi:10.1111/j.1365-313X.2007.03316.x

    CAS  Article  PubMed  Google Scholar 

  59. Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra RF, Battaglia R, Rogachev I, Aharoni A, Kater MM, Caporali E, Colombo L (2014) SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet 10:e1004856. doi:10.1371/journal.pgen.1004856

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nesi N, Debeaujon I, Jonda C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479. doi:10.1105/tpc.004127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. ÓMaoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwasniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F (2013) Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25:2482–2503. doi:10.1105/tpc.113.113209

    Article  PubMed  Google Scholar 

  62. Pajoro A, Madrigal P, Muiño JM, Matus JT, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, Ó’Maoiléidigh DS, Wellmer F, Krajewski P, Riechmann J, Angenent GC, Kaufmann K (2014) Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15:R41. doi:10.1186/gb-2014-15-3-r41

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203. doi:10.1038/35012103

    CAS  Article  PubMed  Google Scholar 

  64. Perbal M, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    CAS  PubMed  Google Scholar 

  65. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi:10.1038/nature01741

    CAS  Article  PubMed  Google Scholar 

  66. Prunet N, Morel P, Thierry A, Eshed Y, Bowman JL, Negrutiu I, Trehin C (2008) REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana. Plant Cell 20:901–919. doi:10.1105/tpc.107.053306

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26:3603–3615. doi:10.1105/tpc.114.127910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA 93:4793–4798

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Rim Y, Huang L, Chu H, Han X, Cho W, Jeon C, Kim HJ, Hong JC, Lucas WJ, Kim JY (2011) Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns. Mol Cells 32:519–526. doi:10.1007/s10059-011-0135-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Sieburth LE, Drews GN, Meyerowitz EM (1998) Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125:4303–4312

  71. Smaczniak C, Immink RGH, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 109:1560–1565. doi:10.1073/pnas.1112871109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767. doi:10.1105/tpc.2.8.755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Sridhar VV, Surendrarao A, Liu Z (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159–3166. doi:10.1242/dev.02498

    CAS  Article  PubMed  Google Scholar 

  74. Sun B, Looi L, Guo S, He Z, Gan E, Huang J, Xu Y, Wee W, Ito T (2014) Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343:1248559. doi:10.1126/science.1248559

    Article  PubMed  Google Scholar 

  75. Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146:1663–1672. doi:10.1104/pp.108.115832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Theißen G, Saedler H (2001) Plant biology. Floral Quartets Nature 409:469–471. doi:10.1038/35054172

  77. Urbanus SL, de Folter S, Shchennikova AV, Kaufmann K, Immink RGH, Angenent GC (2009) In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol 9:5. doi:10.1186/1471-2229-9-5

  78. Urbanus SL, Martinelli AP, Dinh QDP, Aizza LCB, Dornelas MC, Angenent GC, Immink RGH (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72. doi:10.1111/j.1365-313X.2010.04221.x

    CAS  PubMed  Google Scholar 

  79. Vaddepalli P, Scholz S, Schneitz K (2015) Pattern formation during early floral development. Curr Opin Genet Dev 32:16–23. doi:10.1016/j.gde.2015.01.001

    CAS  Article  PubMed  Google Scholar 

  80. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859. doi:10.1016/0092-8674(92)90295-N

    CAS  Article  PubMed  Google Scholar 

  81. Wellmer F, Graciet E, Riechmann JL (2014) Specification of floral organs in Arabidopsis. J Exp Bot 65:1–9. doi:10.1093/jxb/ert385

    CAS  Article  PubMed  Google Scholar 

  82. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. doi:10.1126/science.1114358

    CAS  Article  PubMed  Google Scholar 

  83. Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642. doi:10.1242/dev.036673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Wu S, Gallagher KL (2012) Transcription factors on the move. Curr Opin Plant Biol 15:645–651. doi:10.1016/j.pbi.2012.09.010

    CAS  Article  PubMed  Google Scholar 

  85. Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745. doi:10.1242/dev.00577

    CAS  Article  PubMed  Google Scholar 

  86. Wuest SE, O’Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci USA 109:13452–13457. doi:10.1073/pnas.1207075109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18:15–28. doi:10.1105/tpc.105.037200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59. doi:10.1046/j.0960-7412.2003.01473.x

    Article  PubMed  Google Scholar 

  89. Yellina AL, Orashakova S, Lange S, Erdmann R, Leebens-Mack J, Becker A (2010) Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). Evodevo 1:13. doi:10.1186/2041-9139-1-13

  90. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62:4719–4730. doi:10.1093/jxb/err272

    CAS  Article  PubMed  Google Scholar 

  91. Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PGM, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. In: Science 333(6046):S. 1141–1144. doi:10.1126/science.1205727

  92. Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223. doi:10.1534/genetics.104.037770

Download references

Acknowledgments

We apologize to all authors whose papers we could not cite due to space constraints. Work in AB’s lab is funded by the German Research Foundation (DFG) (grants BE 2537/6-2, 8-1, 9-1, 12-1), and the Justus-Liebig-University Gießen, Germany.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annette Becker.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becker, A., Ehlers, K. Arabidopsis flower development—of protein complexes, targets, and transport. Protoplasma 253, 219–230 (2016). https://doi.org/10.1007/s00709-015-0812-7

Download citation

Keywords

  • Arabidopsis thaliana
  • Flower development
  • Floral homeotic genes
  • Protein complexes
  • Protein transport
  • MADS-box protein target genes