Skip to main content

Advertisement

Log in

Quantifying intracellular dynamics using fluorescence fluctuation spectroscopy

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Originally developed for the field of physical chemistry, fluorescence fluctuation spectroscopy (FFS) has evolved to a family of methods to quantify concentrations, diffusion rates and interactions of fluorescently labelled molecules. The possibility to measure at the nanomolar concentration level and to combine these techniques with microscopy allow to study biological processes with high sensitivity in the living cell. In this review, the basic principles, challenges and recent developments of the most common FFS methods are being discussed and illustrated by intracellular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CFP:

Cyan fluorescent protein

CMOS:

Complementary metal oxide semiconductor

EM-CCD:

Electron-multiplying charge-coupled device

FCCS:

Fluorescence cross-correlation spectroscopy

FCS:

Fluorescence correlation spectroscopy

FFS:

Fluorescence fluctuation spectroscopy

FIDA:

Fluorescence intensity distribution analysis

FP:

Fluorescent protein

FRAP:

Fluorescence recovery after photobleaching

FRET:

Förster resonance energy transfer

GFP:

Green fluorescent protein

HD:

Hybrid detector

ICS:

Image correlation spectroscopy

MAPK:

Mitogen-activated protein kinase

N&B:

Number and brightness analysis

PCH:

Photon-counting histogram

RICS:

Raster image correlation spectroscopy

SPIDA:

Spatial intensity distribution analysis

SPIM:

Selective plane illumination microscopy

STED:

Stimulated emission depletion

STICS:

Spatio-temporal image correlation spectroscopy

TIRF:

Total internal reflection fluorescence

YFP:

Yellow fluorescent protein

References

  • Bacia K, Majoul IV, Schwille P (2002) Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 83:1184–1193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barcellona ML, Gammon S, Hazlett T, Digman MA, Gratton E (2004) Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes. Microsc Res Tech 65:205–217

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29:835–839

    Article  CAS  PubMed  Google Scholar 

  • Cardarelli F, Lanzano L, Gratton E (2012) Capturing directed molecular motion in the nuclear pore complex of live cells. Proc Natl Acad Sci U S A 109:9863–9868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Johnson J, Macdonald P, Wu B, Müller JD (2010) Observing protein interactions and their stoichiometry in living cells by brightness analysis of fluorescence fluctuation experiments. Methods Enzymol 472:345–363

    Article  CAS  PubMed  Google Scholar 

  • Choi CK, Zareno J, Digman MA, Gratton E, Horwitz AR (2011) Cross-correlated fluctuation analysis reveals phosphorylation-regulated paxillin-FAK complexes in nascent adhesions. Biophys J 100:583–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  • Crosby KC, Postma M, Hink MA, Zeelenberg CHC, Adjobo-Hermans MJ, Gadella TWJ (2013) Quantitative analysis of self-association and mobility of the Ca2+ binding protein annexin A4 in cells. Biophys J 104:1875–1885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358

    Article  CAS  PubMed  Google Scholar 

  • Digman MA, Dalal R, Horwitz AF, Gratton E (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:2320–2332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digman MA, Wiseman PW, Choi C, Horwitz AR, Gratton E (2009) Stoichiometry of molecular complexes at adhesions in living cells. Proc Natl Acad Sci U S A 106:2170–2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  • Ferguson ML, Le Coq D, Jules M, Aymerich S, Declerck N, Royer CA (2012) Absolute quantification of gene expression in individual bacterial cells using two-photon fluctuation microscopy. Anal Biochem 419:250–259

    Google Scholar 

  • Foo YH, Naredi-Rainer N, Lamb DC, Ahmed S, Wohland T (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys J 102:1174–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gielen E, Smisdom N, vandeVen M, De Clercq B, Gratton E, Digman M, Rigo JM, Hofkens J, Engelborghs Y, Ameloot M (2009) Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection. Langmuir 25:5209–5218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hassler K, Leutenegger M, Rigler P, Rao R, Rigler R, Giisch M, Lasser T (2005) Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule. Opt Express 13:7415–7423

    Article  CAS  PubMed  Google Scholar 

  • Heinze KG, Jahnz M, Schwille P (2004) Triple-color coincidence analysis: one step further in following higher order molecular complex formation. Biophys J 86:506–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrick-Davis K, Grinde E, Lindsley T, Cowan A, Mazurkiewicz JE (2012) Oligomer size of the serotonin 5-HT2C receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J Biol Chem 287:23604–23614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinde E, Cardarelli F, Digman MA, Gratton E (2012) Changes in chromatin compaction during the cell cycle revealed by micrometer-scale measurement of molecular flow in the nucleus. Biophys J 102:691–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hink MA, Postma M (2013) Monitoring receptor oligomerization by line-scan fluorescence cross-correlation spectroscopy. Methods Cell Biol 117:197–212

    Article  CAS  PubMed  Google Scholar 

  • Hink MA, Shah K, Russinova E, de Vries SC, Visser AJWG (2008) Fluorescence fluctuation analysis of AtSERK and BRI1 oligomerisation. Biophys J 94:1052–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapusta P, Macháň R, Benda A, Hof M (2012) Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook. Int J Mol Sci 13:12890–12910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaputsa P (2010) Absolute diffusion coefficients: Compilation of reference data for FCS calibration. Picoquant application note http://www.picoquant.com/technotes/appnote_diffusion_coefficients.pdf

  • Kask P, Palo K, Ullmann D, Gall K (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci U S A 96:13756–13761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164

    Article  CAS  PubMed  Google Scholar 

  • Koopman WJ, Distelmaier F, Hink MA, Verkaart S, Wijers M, Fransen J, Smeitink JA, Willems PH (2008) Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria. Am J Physiol Cell Physiol 294:1124–1132

    Article  Google Scholar 

  • Lestini R, Laptenok SP, Kühn J, Hink MA, Schanne-Klein MC, Liebl U, Myllykallio H (2013) Intracellular dynamics of archaeal FANCM homologue Hef in response to halted DNA replication. Nucleic Acids Res 41:10358–10370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leutenegger M, Ringemann C, Lasser T, Hell SW, Eggeling C (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20:5243–5263

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Ahmed S, Wohland T (2011) EGFR activation monitored by SW-FCCS in live cells. Front Biosci 3:22–32

    Article  Google Scholar 

  • Mäder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signaling. Nat Cell Biol 9:1319–1326

    Article  Google Scholar 

  • Maertens G, Vercammen J, Debyser Z, Engelborghs Y (2005) Measuring protein-protein interactions inside living cells using single color fluorescence correlation spectroscopy. Application to human immunodeficiency virus type 1 integrase and LEDGF/p75. FASEB J 19:1039–1041

    CAS  PubMed  Google Scholar 

  • Magde DE, Elson EL, Webb WW (1972) Thermodynamics fluctuations in a reacting system: Measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  • Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michelman-Ribeiro A, Mazza D, Rosales T, Stasevich TJ, Boukari H, Rishi V, Vinson C, Knutson JR, McNally JG (2009) Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. Biophys J 97:337–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy P, Claus J, Jovin TM, Arndt-Jovin DJ (2010) Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc Natl Acad Sci U S A 107:16524–16529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Needleman DJ, Xu Y, Mitchison TJ (2009) Pin-hole array correlation imaging: Highly parallel fluorescence correlation spectroscopy. Biophys J 96:5050–5059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ossato G, Digman MA, Aiken C, Lukacsovich T, Marsh JL, Gratton E (2010) A two-step path to inclusion formation of huntingtin peptides revealed by number and brightness analysis. Biophys J 98:3078–3085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen NO, Höddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrasek Z, Hoege C, Mashaghi A, Ohrt T, Hyman AA, Schwille P (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95:5476–5486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price ES, DeVore MS, Johnson CK (2010) Detecting intramolecular dynamics and multiple Förster resonance energy transfer states by fluorescence correlation spectroscopy. J Phys Chem B 114:5895–5902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ridgeway WK, Millar DP, Williamson JR (2013) Vectorized data acquisition and fast triple-correlation integrals for fluorescence triple correlation spectroscopy. Comput Phys Commun 184:1322–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ries J, Yu SR, Burkhardt M, Brand M, Schwille P (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6:643–645

    Article  CAS  PubMed  Google Scholar 

  • Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    CAS  Google Scholar 

  • Rose RH, Briddon SJ, Hill SJ (2012) A novel fluorescent histamine H(1) receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br J Pharmacol 165:1789–1800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savatier J, Jalaguier S, Ferguson ML, Cavaillès V, Royer CA (2010) Estrogen receptor interactions and dynamics monitored in live cells by fluorescence cross-correlation spectroscopy. Biochemistry 49:772–781

    Article  CAS  PubMed  Google Scholar 

  • Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Nat Acad Sci USA 97:151–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sergeev M, Godin AG, Kao L, Abuladze N, Wiseman PW, Kurtz I (2012) Determination of membrane protein transporter oligomerisation in native tissue using spatial fluorescence intensity fluctuation analysis. Plos One 7:1–11

    Article  Google Scholar 

  • Shcherbakova D, Hink MA, Joosen L, Gadella TWJ Jr, Verkhusha VV (2012) An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J Am Chem Soc 134:7913–7923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi X, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S, Wohland T (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97:678–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh AP, Krieger JW, Buchholz J, Charbon E, Langowski J, Wohland T (2013) The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy. Opt Express 21:8652–8668

    Article  CAS  PubMed  Google Scholar 

  • Slaughter BD, Schwartz JW, Li R (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci U S A 104:20320–20325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slaughter BD, Huff JM, Wiegraebe W, Schwartz JW, Li R (2008) SAM domain-based protein oligomerisation observed by live-cell fluorescence fluctuation spectroscopy. Plos One 3:e1931

    Article  PubMed Central  PubMed  Google Scholar 

  • Sudhaharan T, Liu P, Foo YH, Bu W, Lim KB, Wohland T, Ahmed S (2009) Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J Biol Chem 284:13602–13609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swift JL, Godin AG, Doré K, Freland L, Bouchard N, Nimmo C, Sergeev M, De Koninck Y, Wiseman PW, Beaulieu JM (2011) Quantification of receptor tyrosine kinase transactivation through direct dimerisation and surface density measurements in single cells. Proc Natl Acad Sci U S A 108:7016–7021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari M, Mikuni S, Muto H, Kinjo M (2013) Determination of dissociation constant of the NFκB p50/p65 heterodimer using fluorescence cross-correlation spectroscopy in the living cell. Biochem Biophys Res Commun 436:430–435

    Article  CAS  PubMed  Google Scholar 

  • Toplak T, Pandzic E, Chen L, Vicente-Manzanares M, Horwitz AR, Wiseman PW (2012) STICCS reveals matrix-dependent adhesion slipping and gripping in migrating cells. Biophys J 103:1672–1682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vendelin M, Birkedal R (2008) Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am J Physiol Cell Physiol 295:C1302–C1315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–690

    Article  CAS  PubMed  Google Scholar 

  • Wawrezinieck L, Rigneault H, Marguet D, Lenne P-F (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weidtkamp-Peters S, Felekyan S, Bleckmann A, Simon R, Becker W, Kühnemuth R, Seidel CA (2009) Multiparameter fluorescence image spectroscopy to study molecular interactions. Photochem Photobiol Sci 8:470–480

    Article  CAS  PubMed  Google Scholar 

  • Wohland T, Shi X, Sankaran J, Stelzer EH (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641

    Article  CAS  PubMed  Google Scholar 

  • Yu SR, Burkhardt M, Nowak M, Ries J, Petrášek Z, Scholpp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Netherlands Organisation for Scientific Research (NWO) for supporting research via Echo & Middelgroot investment grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hink.

Additional information

Handling Editor: J. W. Borst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hink, M.A. Quantifying intracellular dynamics using fluorescence fluctuation spectroscopy. Protoplasma 251, 307–316 (2014). https://doi.org/10.1007/s00709-013-0602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0602-z

Keywords

Navigation